File size: 11,705 Bytes
2899431 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import contextlib
import random
import numpy as np
import os
from glob import glob
from PIL import Image, ImageSequence
import torch
from torchvision.io import read_video, write_video
import torchvision.transforms as T
from diffusers import DDIMScheduler, StableDiffusionControlNetPipeline, StableDiffusionPipeline, StableDiffusionDepth2ImgPipeline, ControlNetModel
from .controlnet_utils import CONTROLNET_DICT, control_preprocess
from einops import rearrange
FRAME_EXT = [".jpg", ".png"]
def init_model(device="cuda", sd_version="1.5", model_key=None, control_type="none", weight_dtype="fp16"):
use_depth = False
if model_key is None:
if sd_version == '2.1':
model_key = "stabilityai/stable-diffusion-2-1-base"
elif sd_version == '2.0':
model_key = "stabilityai/stable-diffusion-2-base"
elif sd_version == '1.5':
model_key = "runwayml/stable-diffusion-v1-5"
elif sd_version == 'depth':
model_key = "stabilityai/stable-diffusion-2-depth"
use_depth = True
else:
raise ValueError(
f'Stable-diffusion version {sd_version} not supported.')
print(f'[INFO] loading stable diffusion from: {model_key}')
else:
print(f'[INFO] loading custome model from: {model_key}')
scheduler = DDIMScheduler.from_pretrained(
model_key, subfolder="scheduler")
if weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
if control_type not in ["none", "pnp"]:
controlnet_key = CONTROLNET_DICT[control_type]
print(f'[INFO] loading controlnet from: {controlnet_key}')
controlnet = ControlNetModel.from_pretrained(
controlnet_key, torch_dtype=weight_dtype)
print(f'[INFO] loaded controlnet!')
pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_key, controlnet=controlnet, torch_dtype=weight_dtype
)
elif use_depth:
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
model_key, torch_dtype=weight_dtype
)
else:
pipe = StableDiffusionPipeline.from_pretrained(
# model_key, torch_dtype=weight_dtype
model_key, torch_dtype=weight_dtype,
)
return pipe.to(device), scheduler, model_key
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
def load_image(image_path):
image = Image.open(image_path).convert('RGB')
image = T.ToTensor()(image)
return image.unsqueeze(0)
def process_frames(frames, h, w):
fh, fw = frames.shape[-2:]
h = int(np.floor(h / 64.0)) * 64
w = int(np.floor(w / 64.0)) * 64
nw = int(fw / fh * h)
if nw >= w:
size = (h, nw)
else:
size = (int(fh / fw * w), w)
assert len(frames.shape) >= 3
if len(frames.shape) == 3:
frames = [frames]
print(
f"[INFO] frame size {(fh, fw)} resize to {size} and centercrop to {(h, w)}")
frame_ls = []
for frame in frames:
resized_frame = T.Resize(size)(frame)
cropped_frame = T.CenterCrop([h, w])(resized_frame)
# croped_frame = T.FiveCrop([h, w])(resized_frame)[0]
frame_ls.append(cropped_frame)
return torch.stack(frame_ls)
def glob_frame_paths(video_path):
frame_paths = []
for ext in FRAME_EXT:
frame_paths += glob(os.path.join(video_path, f"*{ext}"))
frame_paths = sorted(frame_paths)
return frame_paths
def load_video(video_path, h, w, frame_ids=None, device="cuda"):
if ".mp4" in video_path:
frames, _, _ = read_video(
video_path, output_format="TCHW", pts_unit="sec")
frames = frames / 255
elif ".gif" in video_path:
frames = Image.open(video_path)
frame_ls = []
for frame in ImageSequence.Iterator(frames):
frame_ls += [T.ToTensor()(frame.convert("RGB"))]
frames = torch.stack(frame_ls)
else:
frame_paths = glob_frame_paths(video_path)
frame_ls = []
for frame_path in frame_paths:
frame = load_image(frame_path)
frame_ls.append(frame)
frames = torch.cat(frame_ls)
if frame_ids is not None:
frames = frames[frame_ids]
print(f"[INFO] loaded video with {len(frames)} frames from: {video_path}")
frames = process_frames(frames, h, w)
return frames.to(device)
def save_video(frames: torch.Tensor, path, frame_ids=None, save_frame=False):
os.makedirs(path, exist_ok=True)
if frame_ids is None:
frame_ids = [i for i in range(len(frames))]
frames = frames[frame_ids]
proc_frames = (rearrange(frames, "T C H W -> T H W C") * 255).to(torch.uint8).cpu()
write_video(os.path.join(path, "output.mp4"), proc_frames, fps = 30, video_codec="h264")
print(f"[INFO] save video to {os.path.join(path, 'output.mp4')}")
if save_frame:
save_frames(frames, os.path.join(path, "frames"), frame_ids = frame_ids)
def save_frames(frames: torch.Tensor, path, ext="png", frame_ids=None):
os.makedirs(path, exist_ok=True)
if frame_ids is None:
frame_ids = [i for i in range(len(frames))]
for i, frame in zip(frame_ids, frames):
T.ToPILImage()(frame).save(
os.path.join(path, '{:04}.{}'.format(i, ext)))
def load_latent(latent_path, t, frame_ids=None):
latent_fname = f'noisy_latents_{t}.pt'
lp = os.path.join(latent_path, latent_fname)
assert os.path.exists(
lp), f"Latent at timestep {t} not found in {latent_path}."
latents = torch.load(lp)
if frame_ids is not None:
latents = latents[frame_ids]
# print(f"[INFO] loaded initial latent from {lp}")
return latents
@torch.no_grad()
def prepare_depth(pipe, frames, frame_ids, work_dir):
depth_ls = []
depth_dir = os.path.join(work_dir, "depth")
os.makedirs(depth_dir, exist_ok=True)
for frame, frame_id in zip(frames, frame_ids):
depth_path = os.path.join(depth_dir, "{:04}.pt".format(frame_id))
depth = load_depth(pipe, depth_path, frame)
depth_ls += [depth]
print(f"[INFO] loaded depth images from {depth_path}")
return torch.cat(depth_ls)
# From pix2video: code/file_utils.py
def load_depth(model, depth_path, input_image, dtype=torch.float32):
if os.path.exists(depth_path):
depth_map = torch.load(depth_path)
else:
input_image = T.ToPILImage()(input_image.squeeze())
depth_map = prepare_depth_map(
model, input_image, dtype=dtype, device=model.device)
torch.save(depth_map, depth_path)
depth_image = (((depth_map + 1.0) / 2.0) * 255).to(torch.uint8)
T.ToPILImage()(depth_image.squeeze()).convert(
"L").save(depth_path.replace(".pt", ".png"))
return depth_map
@torch.no_grad()
def prepare_depth_map(model, image, depth_map=None, batch_size=1, do_classifier_free_guidance=False, dtype=torch.float32, device="cuda"):
if isinstance(image, Image.Image):
image = [image]
else:
image = list(image)
if isinstance(image[0], Image.Image):
width, height = image[0].size
elif isinstance(image[0], np.ndarray):
width, height = image[0].shape[:-1]
else:
height, width = image[0].shape[-2:]
if depth_map is None:
pixel_values = model.feature_extractor(
images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device=device)
# The DPT-Hybrid model uses batch-norm layers which are not compatible with fp16.
# So we use `torch.autocast` here for half precision inference.
context_manger = torch.autocast(
"cuda", dtype=dtype) if device.type == "cuda" else contextlib.nullcontext()
with context_manger:
ret = model.depth_estimator(pixel_values)
depth_map = ret.predicted_depth
# depth_image = ret.depth
else:
depth_map = depth_map.to(device=device, dtype=dtype)
indices = depth_map != -1
bg_indices = depth_map == -1
min_d = depth_map[indices].min()
if bg_indices.sum() > 0:
depth_map[bg_indices] = min_d - 10
# min_d = min_d - 10
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=(height // model.vae_scale_factor,
width // model.vae_scale_factor),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = 2.0 * (depth_map - depth_min) / (depth_max - depth_min) - 1.0
depth_map = depth_map.to(dtype)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if depth_map.shape[0] < batch_size:
repeat_by = batch_size // depth_map.shape[0]
depth_map = depth_map.repeat(repeat_by, 1, 1, 1)
depth_map = torch.cat(
[depth_map] * 2) if do_classifier_free_guidance else depth_map
return depth_map
def get_latents_dir(latents_path, model_key):
model_key = model_key.split("/")[-1]
return os.path.join(latents_path, model_key)
def get_controlnet_kwargs(controlnet, x, cond, t, controlnet_cond, controlnet_scale=1.0):
down_block_res_samples, mid_block_res_sample = controlnet(
x,
t,
encoder_hidden_states=cond,
controlnet_cond=controlnet_cond,
return_dict=False,
)
down_block_res_samples = [
down_block_res_sample * controlnet_scale
for down_block_res_sample in down_block_res_samples
]
mid_block_res_sample *= controlnet_scale
controlnet_kwargs = {"down_block_additional_residuals": down_block_res_samples,
"mid_block_additional_residual": mid_block_res_sample}
return controlnet_kwargs
def get_frame_ids(frame_range, frame_ids=None):
if frame_ids is None:
frame_ids = list(range(*frame_range))
frame_ids = sorted(frame_ids)
if len(frame_ids) > 4:
frame_ids_str = "{} {} ... {} {}".format(
*frame_ids[:2], *frame_ids[-2:])
else:
frame_ids_str = " ".join(["{}"] * len(frame_ids)).format(*frame_ids)
print("[INFO] frame indexes: ", frame_ids_str)
return frame_ids
def prepare_control(control, frames, frame_ids, save_path):
if control not in CONTROLNET_DICT.keys():
print(f"[WARNING] unknown controlnet type {control}")
return None
control_subdir = f'{save_path}/{control}_image'
preprocess_flag = True
if os.path.exists(control_subdir):
print(f"[INFO] load control image from {control_subdir}.")
control_image_ls = []
for frame_id in frame_ids:
image_path = os.path.join(
control_subdir, "{:04}.png".format(frame_id))
if not os.path.exists(image_path):
break
control_image_ls += [load_image(image_path)]
else:
preprocess_flag = False
control_images = torch.cat(control_image_ls)
if preprocess_flag:
print("[INFO] preprocessing control images...")
control_images = control_preprocess(frames, control)
print(f"[INFO] save control images to {control_subdir}.")
os.makedirs(control_subdir, exist_ok=True)
for image, frame_id in zip(control_images, frame_ids):
image_path = os.path.join(
control_subdir, "{:04}.png".format(frame_id))
T.ToPILImage()(image).save(image_path)
return control_images |