File size: 15,264 Bytes
f5bb4af 7a073d1 78b2e05 7a073d1 78b2e05 f5bb4af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import torch.nn as nn
import torch
import numpy as np
from tqdm import tqdm
import os
from transformers import logging
from .controlnet_utils import CONTROLNET_DICT
from .config_utils import load_config, save_config
from .utils import get_controlnet_kwargs, get_frame_ids, get_latents_dir, init_model, seed_everything
from .utils import prepare_control, load_latent, load_video, prepare_depth, save_video
from .pnp_utils import register_time, register_attention_control, register_conv_control
# will cause an issue
from . import vidtome
# suppress partial model loading warning
logging.set_verbosity_error()
class Generator(nn.Module):
def __init__(self, pipe, scheduler, config):
super().__init__()
self.device = config.device
self.seed = config.seed
self.model_key = config.model_key
self.config = config
gene_config = config.generation
float_precision = gene_config.float_precision if "float_precision" in gene_config else config.float_precision
if float_precision == "fp16":
self.dtype = torch.float16
print("[INFO] float precision fp16. Use torch.float16.")
else:
self.dtype = torch.float32
print("[INFO] float precision fp32. Use torch.float32.")
self.pipe = pipe
self.vae = pipe.vae
self.tokenizer = pipe.tokenizer
self.unet = pipe.unet
self.text_encoder = pipe.text_encoder
if config.enable_xformers_memory_efficient_attention:
try:
pipe.enable_xformers_memory_efficient_attention()
except ModuleNotFoundError:
print("[WARNING] xformers not found. Disable xformers attention.")
self.n_timesteps = gene_config.n_timesteps
scheduler.set_timesteps(gene_config.n_timesteps, device=self.device)
self.scheduler = scheduler
self.batch_size = 2
self.control = gene_config.control
self.use_depth = config.sd_version == "depth"
self.use_controlnet = self.control in CONTROLNET_DICT.keys()
self.use_pnp = self.control == "pnp"
if self.use_controlnet:
self.controlnet = pipe.controlnet
self.controlnet_scale = gene_config.control_scale
elif self.use_pnp:
pnp_f_t = int(gene_config.n_timesteps * gene_config.pnp_f_t)
pnp_attn_t = int(gene_config.n_timesteps * gene_config.pnp_attn_t)
self.batch_size += 1
self.init_pnp(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
self.chunk_size = gene_config.chunk_size
self.chunk_ord = gene_config.chunk_ord
self.merge_global = gene_config.merge_global
self.local_merge_ratio = gene_config.local_merge_ratio
self.global_merge_ratio = gene_config.global_merge_ratio
self.global_rand = gene_config.global_rand
self.align_batch = gene_config.align_batch
self.prompt = gene_config.prompt
self.negative_prompt = gene_config.negative_prompt
self.guidance_scale = gene_config.guidance_scale
self.save_frame = gene_config.save_frame
self.frame_height, self.frame_width = config.height, config.width
self.work_dir = config.work_dir
self.chunk_ord = gene_config.chunk_ord
if "mix" in self.chunk_ord:
self.perm_div = float(self.chunk_ord.split("-")[-1]) if "-" in self.chunk_ord else 3.
self.chunk_ord = "mix"
# Patch VidToMe to model
self.activate_vidtome()
if gene_config.use_lora:
self.pipe.load_lora_weights(**gene_config.lora)
def activate_vidtome(self):
vidtome.apply_patch(self.pipe, self.local_merge_ratio, self.merge_global, self.global_merge_ratio,
seed = self.seed, batch_size = self.batch_size, align_batch = self.use_pnp or self.align_batch, global_rand = self.global_rand)
@torch.no_grad()
def get_text_embeds_input(self, prompt, negative_prompt):
text_embeds = self.get_text_embeds(
prompt, negative_prompt, self.device)
if self.use_pnp:
pnp_guidance_embeds = self.get_text_embeds("", device=self.device)
text_embeds = torch.cat(
[pnp_guidance_embeds, text_embeds], dim=0)
return text_embeds
@torch.no_grad()
def get_text_embeds(self, prompt, negative_prompt=None, device="cuda"):
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
truncation=True, return_tensors='pt')
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
if negative_prompt is not None:
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
return_tensors='pt')
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
@torch.no_grad()
def prepare_data(self, data_path, latent_path, frame_ids):
self.frames = load_video(data_path, self.frame_height,
self.frame_width, frame_ids=frame_ids, device=self.device)
self.init_noise = load_latent(
latent_path, t=self.scheduler.timesteps[0], frame_ids=frame_ids).to(self.dtype).to(self.device)
if self.use_depth:
self.depths = prepare_depth(
self.pipe, self.frames, frame_ids, self.work_dir).to(self.init_noise)
if self.use_controlnet:
self.controlnet_images = prepare_control(
self.control, self.frames, frame_ids, self.work_dir).to(self.init_noise)
@torch.no_grad()
def decode_latents(self, latents):
with torch.autocast(device_type=self.device, dtype=self.dtype):
latents = 1 / 0.18215 * latents
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
@torch.no_grad()
def decode_latents_batch(self, latents):
imgs = []
batch_latents = latents.split(self.batch_size, dim=0)
for latent in batch_latents:
imgs += [self.decode_latents(latent)]
imgs = torch.cat(imgs)
return imgs
@torch.no_grad()
def encode_imgs(self, imgs):
with torch.autocast(device_type=self.device, dtype=self.dtype):
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.mean * 0.18215
return latents
@torch.no_grad()
def encode_imgs_batch(self, imgs):
latents = []
batch_imgs = imgs.split(self.batch_size, dim=0)
for img in batch_imgs:
latents += [self.encode_imgs(img)]
latents = torch.cat(latents)
return latents
def get_chunks(self, flen):
x_index = torch.arange(flen)
# The first chunk has a random length
rand_first = np.random.randint(0, self.chunk_size) + 1
chunks = x_index[rand_first:].split(self.chunk_size, dim=0)
chunks = [x_index[:rand_first]] + list(chunks) if len(chunks[0]) > 0 else [x_index[:rand_first]]
if np.random.rand() > 0.5:
chunks = chunks[::-1]
# Chunk order only matter when we do global token merging
if self.merge_global == False:
return chunks
# Chunk order. "seq": sequential order. "rand": full permutation. "mix": partial permutation.
if self.chunk_ord == "rand":
order = torch.randperm(len(chunks))
elif self.chunk_ord == "mix":
randord = torch.randperm(len(chunks)).tolist()
rand_len = int(len(randord) / self.perm_div)
seqord = sorted(randord[rand_len:])
if rand_len > 0:
randord = randord[:rand_len]
if abs(seqord[-1] - randord[-1]) < abs(seqord[0] - randord[-1]):
seqord = seqord[::-1]
order = randord + seqord
else:
order = seqord
else:
order = torch.arange(len(chunks))
chunks = [chunks[i] for i in order]
return chunks
@torch.no_grad()
def ddim_sample(self, x, conds):
print("[INFO] denoising frames...")
timesteps = self.scheduler.timesteps
noises = torch.zeros_like(x)
for i, t in enumerate(tqdm(timesteps, desc="Sampling")):
self.pre_iter(x, t)
# Split video into chunks and denoise
chunks = self.get_chunks(len(x))
for chunk in chunks:
torch.cuda.empty_cache()
noises[chunk] = self.pred_noise(
x[chunk], conds, t, batch_idx=chunk)
x = self.pred_next_x(x, noises, t, i, inversion=False)
self.post_iter(x, t)
return x
def pre_iter(self, x, t):
if self.use_pnp:
# Prepare PnP
register_time(self, t.item())
cur_latents = load_latent(self.latent_path, t=t, frame_ids = self.frame_ids)
self.cur_latents = cur_latents
def post_iter(self, x, t):
if self.merge_global:
# Reset global tokens
vidtome.update_patch(self.pipe, global_tokens = None)
@torch.no_grad()
def pred_noise(self, x, cond, t, batch_idx=None):
flen = len(x)
text_embed_input = cond.repeat_interleave(flen, dim=0)
# For classifier-free guidance
latent_model_input = torch.cat([x, x])
batch_size = 2
if self.use_pnp:
# Cat latents from inverted source frames for PnP operation
source_latents = self.cur_latents
if batch_idx is not None:
source_latents = source_latents[batch_idx]
latent_model_input = torch.cat([source_latents.to(x), latent_model_input])
batch_size += 1
# For sd-depth model
if self.use_depth:
depth = self.depths
if batch_idx is not None:
depth = depth[batch_idx]
depth = depth.repeat(batch_size, 1, 1, 1)
latent_model_input = torch.cat([latent_model_input, depth.to(x)], dim=1)
kwargs = dict()
# Compute controlnet outputs
if self.use_controlnet:
controlnet_cond = self.controlnet_images
if batch_idx is not None:
controlnet_cond = controlnet_cond[batch_idx]
controlnet_cond = controlnet_cond.repeat(batch_size, 1, 1, 1)
controlnet_kwargs = get_controlnet_kwargs(
self.controlnet, latent_model_input, text_embed_input, t, controlnet_cond, self.controlnet_scale)
kwargs.update(controlnet_kwargs)
# Pred noise!
eps = self.unet(latent_model_input, t, encoder_hidden_states=text_embed_input, **kwargs).sample
noise_pred_uncond, noise_pred_cond = eps.chunk(batch_size)[-2:]
# CFG
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
return noise_pred
@torch.no_grad()
def pred_next_x(self, x, eps, t, i, inversion=False):
if inversion:
timesteps = reversed(self.scheduler.timesteps)
else:
timesteps = self.scheduler.timesteps
alpha_prod_t = self.scheduler.alphas_cumprod[t]
if inversion:
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i - 1]]
if i > 0 else self.scheduler.final_alpha_cumprod
)
else:
alpha_prod_t_prev = (
self.scheduler.alphas_cumprod[timesteps[i + 1]]
if i < len(timesteps) - 1
else self.scheduler.final_alpha_cumprod
)
mu = alpha_prod_t ** 0.5
sigma = (1 - alpha_prod_t) ** 0.5
mu_prev = alpha_prod_t_prev ** 0.5
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
if inversion:
pred_x0 = (x - sigma_prev * eps) / mu_prev
x = mu * pred_x0 + sigma * eps
else:
pred_x0 = (x - sigma * eps) / mu
x = mu_prev * pred_x0 + sigma_prev * eps
return x
def init_pnp(self, conv_injection_t, qk_injection_t):
qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
register_attention_control(
self, qk_injection_timesteps, num_inputs=self.batch_size)
register_conv_control(
self, conv_injection_timesteps, num_inputs=self.batch_size)
def check_latent_exists(self, latent_path):
if self.use_pnp:
timesteps = self.scheduler.timesteps
else:
timesteps = [self.scheduler.timesteps[0]]
for ts in timesteps:
cur_latent_path = os.path.join(
latent_path, f'noisy_latents_{ts}.pt')
if not os.path.exists(cur_latent_path):
return False
return True
@torch.no_grad()
def __call__(self, data_path, latent_path, output_path, frame_ids):
self.scheduler.set_timesteps(self.n_timesteps)
latent_path = get_latents_dir(latent_path, self.model_key)
assert self.check_latent_exists(
latent_path), f"Required latent not found at {latent_path}. \
Note: If using PnP as control, you need inversion latents saved \
at each generation timestep."
self.data_path = data_path
self.latent_path = latent_path
self.frame_ids = frame_ids
self.prepare_data(data_path, latent_path, frame_ids)
print(f"[INFO] initial noise latent shape: {self.init_noise.shape}")
for edit_name, edit_prompt in self.prompt.items():
print(f"[INFO] current prompt: {edit_prompt}")
conds = self.get_text_embeds_input(edit_prompt, self.negative_prompt)
# Comment this if you have enough GPU memory
clean_latent = self.ddim_sample(self.init_noise, conds)
torch.cuda.empty_cache()
clean_frames = self.decode_latents_batch(clean_latent)
cur_output_path = os.path.join(output_path, edit_name)
save_config(self.config, cur_output_path, gene = True)
save_video(clean_frames, cur_output_path, save_frame = self.save_frame)
if __name__ == "__main__":
config = load_config()
pipe, scheduler, model_key = init_model(
config.device, config.sd_version, config.model_key, config.generation.control, config.float_precision)
config.model_key = model_key
seed_everything(config.seed)
generator = Generator(pipe, scheduler, config)
frame_ids = get_frame_ids(
config.generation.frame_range, config.generation.frame_ids)
generator(config.input_path, config.generation.latents_path,
config.generation.output_path, frame_ids=frame_ids) |