VidToMe / pipeline.py
jadechoghari's picture
Update pipeline.py
59e9a43 verified
raw
history blame
8.63 kB
from diffusers import DiffusionPipeline
from .invert import Inverter
from .generate import Generator
from .utils import init_model, seed_everything, get_frame_ids
import torch
from omegaconf import OmegaConf
class VidToMePipeline(DiffusionPipeline):
# def __init__(self, device="cuda", sd_version="2.1", float_precision="fp16", height=512, width=512):
# # this will initlize the core pipeline components
# pipe, scheduler, model_key = init_model(device, sd_version, None, "none", float_precision)
# self.pipe = pipe
# self.scheduler = scheduler
# self.model_key = model_key
# self.device = device
# self.sd_version = sd_version
# self.float_precision = float_precision
# self.height = height
# self.width = width
def __init__(self, device="cuda", sd_version="1.5", float_precision="fp16", height=512, width=512):
# Register configuration parameters
self.register_to_config(device=device, sd_version=sd_version, float_precision=float_precision, height=height, width=width)
self.sd_version = sd_version
self.float_precision = float_precision
self.height = height
self.width = width
# this will initlize the core pipeline components
pipe, scheduler, model_key = init_model(device, sd_version, None, "none", float_precision)
self.pipe = pipe
self.scheduler = scheduler
self.model_key = model_key
super().__init__()
def __call__(self, video_path=None, video_prompt=None, edit_prompt=None,
control_type="none", n_timesteps=50, guidance_scale=7.5,
negative_prompt="ugly, blurry, low res", frame_range=None,
use_lora=False, seed=123, local_merge_ratio=0.9, global_merge_ratio=0.8):
# dynamic config built from user inputs
config = self._build_config(video_path, video_prompt, edit_prompt, control_type,
n_timesteps, guidance_scale, negative_prompt,
frame_range, use_lora, seed, local_merge_ratio, global_merge_ratio)
# seed for reproducibility - change as you need
seed_everything(config['seed'])
# inversion stage
print("Start inversion!")
inversion = Inverter(self.pipe, self.scheduler, config)
inversion(config['input_path'], config['inversion']['save_path'])
# generation stage
print("Start generation!")
generator = Generator(self.pipe, self.scheduler, config)
frame_ids = get_frame_ids(config['generation']['frame_range'], None)
generator(config['input_path'], config['generation']['latents_path'],
config['generation']['output_path'], frame_ids=frame_ids)
print(f"Output generated at: {config['generation']['output_path']}")
# def _build_config(self, video_path, video_prompt, edit_prompt, control_type,
# n_timesteps, guidance_scale, negative_prompt, frame_range,
# use_lora, seed, local_merge_ratio, global_merge_ratio):
# # constructing config dictionary from user prompts
# config = {
# 'sd_version': self.sd_version,
# 'input_path': video_path,
# 'work_dir': "outputs/",
# 'height': self.height,
# 'width': self.width,
# 'inversion': {
# 'prompt': video_prompt or "Default video prompt.",
# 'save_path': "outputs/latents",
# 'steps': 50,
# 'save_intermediate': False
# },
# 'generation': {
# 'control': control_type,
# 'guidance_scale': guidance_scale,
# 'n_timesteps': n_timesteps,
# 'negative_prompt': negative_prompt,
# 'prompt': edit_prompt or "Default edit prompt.",
# 'latents_path': "outputs/latents",
# 'output_path': "outputs/final",
# 'frame_range': frame_range or [0, 32],
# 'use_lora': use_lora,
# 'local_merge_ratio': local_merge_ratio,
# 'global_merge_ratio': global_merge_ratio
# },
# 'seed': seed,
# 'device': "cuda",
# 'float_precision': self.float_precision
# }
# return config
from omegaconf import OmegaConf
def _build_config(self, video_path, video_prompt, edit_prompt, control_type,
n_timesteps, guidance_scale, negative_prompt, frame_range,
use_lora, seed, local_merge_ratio, global_merge_ratio):
# Build config using OmegaConf, abstracting as much as possible
config = OmegaConf.create({
'sd_version': self.sd_version, # Default sd_version
'model_key': self.model_key or None, # Optionally allow model_key to be None
'input_path': video_path, # Path to the video
'work_dir': "workdir", # Default workdir, can be abstracted further
'height': self.height,
'width': self.width,
'inversion': {
'save_path': "${work_dir}/latents", # Save latents during inversion
'prompt': video_prompt or "Default video prompt.",
'n_frames': None, # None to invert all frames
'steps': 50, # Default inversion steps
'save_intermediate': False, # Default, but can be abstracted to user
'save_steps': 50, # Default
'use_blip': False, # Abstract BLIP prompt creation
'recon': False, # Reconstruct the input video from latents
'control': control_type or "none", # Default to 'none', can use 'tile', 'softedge', etc.
'control_scale': 1.0, # Default control scale
'batch_size': 8, # Default batch size for inversion
'force': False, # Default, force inversion even if latents exist
},
'generation': {
'control': "pnp", # Default to Plug-and-Play for generation control
'pnp_attn_t': 0.5, # PnP args
'pnp_f_t': 0.8, # PnP args
'control_scale': 1.0, # Scale for ControlNet-like controls
'guidance_scale': guidance_scale, # Guidance scale for CFG
'n_timesteps': n_timesteps, # Number of diffusion timesteps
'negative_prompt': negative_prompt or "ugly, blurry, low res", # Negative prompt to avoid undesired generations
'prompt': edit_prompt or None, # Edit prompt during generation
'latents_path': "${work_dir}/latents", # Latents path from inversion
'output_path': "${work_dir}", # Output directory for final images
'chunk_size': 4, # Number of frames processed per chunk
'chunk_ord': "mix-4", # Processing order for video chunks
'local_merge_ratio': local_merge_ratio, # Merge ratio for blending
'merge_global': True, # Enable global merging
'global_merge_ratio': global_merge_ratio, # Global merge ratio
'global_rand': 0.5, # Randomness in global merge
'align_batch': True, # Align batch processing
'frame_range': frame_range or [0, 32, 1], # Default frame range
'frame_ids': None, # Specify frame IDs to edit
'save_frame': True, # Save individual frames
'use_lora': use_lora, # Enable LoRA if applicable
# Additional LoRA configurations
'lora': {
'pretrained_model_name_or_path_or_dict': None, # Default LoRA model path
'lora_weight_name': None,
'lora_adapter': None,
'lora_weight': 1.0
}
},
'seed': seed, # Seed for reproducibility
'device': "cuda", # Default to CUDA
'float_precision': "fp16", # Enable mixed-precision
'enable_xformers_memory_efficient_attention': True # Default to enable xformers memory-efficient attention
})
return config
# # Sample usage
# pipeline = VidToMePipeline(device="cuda", sd_version="2.1", float_precision="fp16")
# pipeline(video_path="path/to/video.mp4", video_prompt="A beautiful scene of a sunset",
# edit_prompt="Make the sunset look more vibrant", control_type="depth", n_timesteps=50)