File size: 12,125 Bytes
04c68a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
from inspect import isfunction
import math
import torch
import torch.nn.functional as F
from torch import nn, einsum
from einops import rearrange, repeat
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
from .attention import *
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
print(f"XFORMERS_IS_AVAILBLE: {XFORMERS_IS_AVAILBLE}")
class SPADAttention(nn.Module):
"""Uses xformers to implement efficient epipolar masking for cross-attention between views."""
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
)
self.attention_op: Optional[Any] = None
def forward(self, x, context=None, mask=None, views=None):
q = self.to_q(x)
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
b, _, _ = q.shape
# epipolar mask
if mask is not None:
mask = mask.unsqueeze(1)
mask_shape = (q.shape[-2], k.shape[-2])
# interpolate epipolar mask to match downsampled unet branch
mask = (
F.interpolate(mask.to(torch.uint8), size=mask_shape).bool().squeeze(1)
)
# repeat mask for each attention head
mask = (
mask.unsqueeze(1)
.repeat(1, self.heads, 1, 1)
.reshape(b * self.heads, *mask.shape[-2:])
)
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
with torch.autocast(enabled=False, device_type="cuda"):
q, k, v = q.float(), k.float(), v.float()
mask_inf = 1e9
fmask = None
if mask is not None:
# convert to attention bias
fmask = mask.float()
fmask[fmask == 0] = -mask_inf
fmask[fmask == 1] = 0
# actually compute the attention, what we cannot get enough of
# Scaled dot-product attention implementation instead of xformers
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.dim_head)
if fmask is not None:
attn_scores += fmask
attn_weights = torch.softmax(attn_scores, dim=-1)
out = torch.matmul(attn_weights, v)
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
# no nans
if out.isnan().any():
breakpoint()
# cleanup
del q, k, v
return self.to_out(out)
class SPADTransformerBlock(nn.Module):
"""Modified SPAD transformer block that enables spatially aware cross-attention."""
def __init__(
self,
dim,
n_heads,
d_head,
dropout=0.0,
context_dim=None,
gated_ff=True,
checkpoint=True,
disable_self_attn=False,
):
super().__init__()
attn_cls = SPADAttention
self.disable_self_attn = disable_self_attn
self.attn1 = attn_cls(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None,
) # is a self-attention if not self.disable_self_attn
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = attn_cls(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
) # is self-attn if context is none
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None, mask=None):
return checkpoint(
self.manystream_forward,
(x, context, mask),
self.parameters(),
self.checkpoint,
)
def manystream_forward(self, x, context=None, mask=None):
assert not self.disable_self_attn
# x: [n, v, h*w, c]
# context: [n, v, seq_len, d]
n, v = x.shape[:2]
# self-attention (between views) with 3d mask
x = rearrange(x, "n v hw c -> n (v hw) c")
x = self.attn1(self.norm1(x), context=None, mask=mask, views=v) + x
x = rearrange(x, "n (v hw) c -> n v hw c", v=v)
# cross-attention (to individual views)
x = rearrange(x, "n v hw c -> (n v) hw c")
context = rearrange(context, "n v seq d -> (n v) seq d")
x = self.attn2(self.norm2(x), context=context) + x
x = self.ff(self.norm3(x)) + x
x = rearrange(x, "(n v) hw c -> n v hw c", v=v)
return x
class SPADTransformer(nn.Module):
"""Spatial Transformer block with post init to add cross attn."""
def __init__(
self,
in_channels,
n_heads,
d_head,
depth=1,
dropout=0.0,
context_dim=None,
disable_self_attn=False,
use_linear=False, # 2.1 vs 1.5 difference
use_checkpoint=True,
):
super().__init__()
if exists(context_dim) and not isinstance(context_dim, list):
context_dim = [context_dim]
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = Normalize(in_channels)
if not use_linear:
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
SPADTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim[d],
disable_self_attn=disable_self_attn,
checkpoint=use_checkpoint,
)
for d in range(depth)
]
)
if not use_linear:
self.proj_out = zero_module(
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
)
else:
self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
self.use_linear = use_linear
# modify conv layers incorporate plucker coordinates
self.post_init()
def post_init(self):
assert getattr(self, "post_intialized", False) is False, "already modified!"
# inflate input conv block to attach plucker coordinates
conv_block = self.proj_in
conv_params = {
k: getattr(conv_block, k)
for k in [
"in_channels",
"out_channels",
"kernel_size",
"stride",
"padding",
]
}
conv_params["in_channels"] += 6
conv_params["dims"] = 2
conv_params["device"] = conv_block.weight.device
# copy original weights for input conv block
inflated_proj_in = conv_nd(**conv_params)
inp_weight = conv_block.weight.data
feat_shape = inp_weight.shape
# intialize new weights for plucker coordinates as zeros
feat_weight = torch.zeros(
(feat_shape[0], 6, *feat_shape[2:]), device=inp_weight.device
)
# assemble new weights and bias
inflated_proj_in.weight.data.copy_(
torch.cat([inp_weight, feat_weight], dim=1)
)
inflated_proj_in.bias.data.copy_(conv_block.bias.data)
self.proj_in = inflated_proj_in
self.post_intialized = True
def forward(self, x, context=None):
return self.spad_forward(x, context=context)
def spad_forward(self, x, context=None):
"""
x: tensor of shape [n, v, c (4), h (32), w (32)]
context: list of [text_emb, epipolar_mask, plucker_coords]
- text_emb: tensor of shape [n, v, seq_len (77), dim (768)]
- epipolar_mask: bool tensor of shape [n, v, seq_len (32*32), seq_len (32*32)]
- plucker_coords: tensor of shape [n, v, dim (6), h (32), w (32)]
"""
n_objects, n_views, c, h, w = x.shape
x_in = x
# note: if no context is given, cross-attention defaults to self-attention
context, plucker = context[:-1], context[-1]
context = [context]
x = rearrange(x, "n v c h w -> (n v) c h w")
x = self.norm(x)
x = rearrange(x, "(n v) c h w -> n v c h w", v=n_views)
# run input projection
if not self.use_linear:
# interpolate plucker to match x
plucker = rearrange(plucker, "n v c h w -> (n v) c h w")
plucker_interpolated = F.interpolate(
plucker, size=x.shape[-2:], align_corners=False, mode="bilinear"
)
plucker_interpolated = rearrange(
plucker_interpolated, "(n v) c h w -> n v c h w", v=n_views
)
# concat plucker to x
x = torch.cat([x, plucker_interpolated], dim=2)
x = rearrange(x, "n v c h w -> (n v) c h w")
x = self.proj_in(x)
x = rearrange(x, "(n v) c h w -> n v c h w", v=n_views)
x = rearrange(x, "n v c h w -> n v (h w) c").contiguous()
if self.use_linear:
x = rearrange(x, "n v x c -> (n v) x c")
x = self.proj_in(x)
x = rearrange(x, "(n v) x c -> n v x c", v=n_views)
# run the transformer blocks
for i, block in enumerate(self.transformer_blocks):
_context = context[i]
mask = None
if isinstance(_context, (list, tuple)):
try:
_context, mask = _context
except:
_context = _context[0]
x = block(x, context=_context, mask=mask)
if x.isnan().any():
breakpoint()
# run output projection
if self.use_linear:
x = rearrange(x, "n v x c -> (n v) x c")
x = self.proj_out(x)
x = rearrange(x, "(n v) x c -> n v x c", v=n_views)
x = rearrange(x, "n v (h w) c -> n v c h w", h=h, w=w).contiguous()
if not self.use_linear:
x = rearrange(x, "n v c h w -> (n v) c h w")
x = self.proj_out(x)
x = rearrange(x, "(n v) c h w -> n v c h w", v=n_views)
return x + x_in
if __name__ == "__main__":
spt_post = SPADTransformer(320, 8, 40, depth=1, context_dim=768).cuda()
n_objects, n_views = 2, 4
x = torch.randn(2, 4, 320, 32, 32).cuda()
context = [
torch.randn(n_objects, n_views, 77, 768).cuda(),
torch.ones(
n_objects, n_views * 32 * 32, n_views * 32 * 32, dtype=torch.bool
).cuda(),
torch.randn(n_objects, n_views, 6, 32, 32).cuda(),
]
x_post = spt_post(x, context=context)
|