jadechoghari
commited on
Commit
•
4de0c6c
1
Parent(s):
b1aa766
Create attention.py
Browse files- unet/attention.py +331 -0
unet/attention.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn, einsum
|
6 |
+
from einops import rearrange, repeat
|
7 |
+
|
8 |
+
def checkpoint(func, inputs, params, flag):
|
9 |
+
"""
|
10 |
+
Evaluate a function without caching intermediate activations, allowing for
|
11 |
+
reduced memory at the expense of extra compute in the backward pass.
|
12 |
+
:param func: the function to evaluate.
|
13 |
+
:param inputs: the argument sequence to pass to `func`.
|
14 |
+
:param params: a sequence of parameters `func` depends on but does not
|
15 |
+
explicitly take as arguments.
|
16 |
+
:param flag: if False, disable gradient checkpointing.
|
17 |
+
"""
|
18 |
+
if False: # disabled checkpointing to allow requires_grad = False for main model
|
19 |
+
args = tuple(inputs) + tuple(params)
|
20 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
21 |
+
else:
|
22 |
+
return func(*inputs)
|
23 |
+
|
24 |
+
try:
|
25 |
+
import xformers
|
26 |
+
import xformers.ops
|
27 |
+
XFORMERS_IS_AVAILBLE = True
|
28 |
+
except:
|
29 |
+
XFORMERS_IS_AVAILBLE = False
|
30 |
+
|
31 |
+
|
32 |
+
def exists(val):
|
33 |
+
return val is not None
|
34 |
+
|
35 |
+
|
36 |
+
def uniq(arr):
|
37 |
+
return{el: True for el in arr}.keys()
|
38 |
+
|
39 |
+
|
40 |
+
def default(val, d):
|
41 |
+
if exists(val):
|
42 |
+
return val
|
43 |
+
return d() if isfunction(d) else d
|
44 |
+
|
45 |
+
|
46 |
+
def max_neg_value(t):
|
47 |
+
return -torch.finfo(t.dtype).max
|
48 |
+
|
49 |
+
|
50 |
+
def init_(tensor):
|
51 |
+
dim = tensor.shape[-1]
|
52 |
+
std = 1 / math.sqrt(dim)
|
53 |
+
tensor.uniform_(-std, std)
|
54 |
+
return tensor
|
55 |
+
|
56 |
+
|
57 |
+
# feedforward
|
58 |
+
class GEGLU(nn.Module):
|
59 |
+
def __init__(self, dim_in, dim_out):
|
60 |
+
super().__init__()
|
61 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
62 |
+
|
63 |
+
def forward(self, x):
|
64 |
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
65 |
+
return x * F.gelu(gate)
|
66 |
+
|
67 |
+
|
68 |
+
class FeedForward(nn.Module):
|
69 |
+
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
70 |
+
super().__init__()
|
71 |
+
inner_dim = int(dim * mult)
|
72 |
+
dim_out = default(dim_out, dim)
|
73 |
+
project_in = nn.Sequential(
|
74 |
+
nn.Linear(dim, inner_dim),
|
75 |
+
nn.GELU()
|
76 |
+
) if not glu else GEGLU(dim, inner_dim)
|
77 |
+
|
78 |
+
self.net = nn.Sequential(
|
79 |
+
project_in,
|
80 |
+
nn.Dropout(dropout),
|
81 |
+
nn.Linear(inner_dim, dim_out)
|
82 |
+
)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
return self.net(x)
|
86 |
+
|
87 |
+
|
88 |
+
def zero_module(module):
|
89 |
+
"""
|
90 |
+
Zero out the parameters of a module and return it.
|
91 |
+
"""
|
92 |
+
for p in module.parameters():
|
93 |
+
p.detach().zero_()
|
94 |
+
return module
|
95 |
+
|
96 |
+
|
97 |
+
def Normalize(in_channels):
|
98 |
+
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
99 |
+
|
100 |
+
|
101 |
+
class LinearAttention(nn.Module):
|
102 |
+
def __init__(self, dim, heads=4, dim_head=32):
|
103 |
+
super().__init__()
|
104 |
+
self.heads = heads
|
105 |
+
hidden_dim = dim_head * heads
|
106 |
+
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
107 |
+
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
b, c, h, w = x.shape
|
111 |
+
qkv = self.to_qkv(x)
|
112 |
+
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
113 |
+
k = k.softmax(dim=-1)
|
114 |
+
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
115 |
+
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
116 |
+
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
117 |
+
return self.to_out(out)
|
118 |
+
|
119 |
+
|
120 |
+
class SpatialSelfAttention(nn.Module):
|
121 |
+
def __init__(self, in_channels):
|
122 |
+
super().__init__()
|
123 |
+
self.in_channels = in_channels
|
124 |
+
|
125 |
+
self.norm = Normalize(in_channels)
|
126 |
+
self.q = torch.nn.Conv2d(in_channels,
|
127 |
+
in_channels,
|
128 |
+
kernel_size=1,
|
129 |
+
stride=1,
|
130 |
+
padding=0)
|
131 |
+
self.k = torch.nn.Conv2d(in_channels,
|
132 |
+
in_channels,
|
133 |
+
kernel_size=1,
|
134 |
+
stride=1,
|
135 |
+
padding=0)
|
136 |
+
self.v = torch.nn.Conv2d(in_channels,
|
137 |
+
in_channels,
|
138 |
+
kernel_size=1,
|
139 |
+
stride=1,
|
140 |
+
padding=0)
|
141 |
+
self.proj_out = torch.nn.Conv2d(in_channels,
|
142 |
+
in_channels,
|
143 |
+
kernel_size=1,
|
144 |
+
stride=1,
|
145 |
+
padding=0)
|
146 |
+
|
147 |
+
def forward(self, x):
|
148 |
+
h_ = x
|
149 |
+
h_ = self.norm(h_)
|
150 |
+
q = self.q(h_)
|
151 |
+
k = self.k(h_)
|
152 |
+
v = self.v(h_)
|
153 |
+
|
154 |
+
# compute attention
|
155 |
+
b,c,h,w = q.shape
|
156 |
+
q = rearrange(q, 'b c h w -> b (h w) c')
|
157 |
+
k = rearrange(k, 'b c h w -> b c (h w)')
|
158 |
+
w_ = torch.einsum('bij,bjk->bik', q, k)
|
159 |
+
|
160 |
+
w_ = w_ * (int(c)**(-0.5))
|
161 |
+
w_ = torch.nn.functional.softmax(w_, dim=2)
|
162 |
+
|
163 |
+
# attend to values
|
164 |
+
v = rearrange(v, 'b c h w -> b c (h w)')
|
165 |
+
w_ = rearrange(w_, 'b i j -> b j i')
|
166 |
+
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
167 |
+
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
168 |
+
h_ = self.proj_out(h_)
|
169 |
+
|
170 |
+
return x+h_
|
171 |
+
|
172 |
+
|
173 |
+
class CrossAttention(nn.Module):
|
174 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
175 |
+
super().__init__()
|
176 |
+
inner_dim = dim_head * heads
|
177 |
+
context_dim = default(context_dim, query_dim)
|
178 |
+
|
179 |
+
self.scale = dim_head ** -0.5
|
180 |
+
self.heads = heads
|
181 |
+
|
182 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
183 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
184 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
185 |
+
|
186 |
+
self.to_out = nn.Sequential(
|
187 |
+
nn.Linear(inner_dim, query_dim),
|
188 |
+
nn.Dropout(dropout)
|
189 |
+
)
|
190 |
+
|
191 |
+
def forward(self, x, context=None, mask=None):
|
192 |
+
h = self.heads
|
193 |
+
|
194 |
+
q = self.to_q(x)
|
195 |
+
context = default(context, x)
|
196 |
+
k = self.to_k(context)
|
197 |
+
v = self.to_v(context)
|
198 |
+
|
199 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
200 |
+
|
201 |
+
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
202 |
+
|
203 |
+
if exists(mask):
|
204 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
205 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
206 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
207 |
+
sim.masked_fill_(~mask, max_neg_value)
|
208 |
+
|
209 |
+
# attention, what we cannot get enough of
|
210 |
+
attn = sim.softmax(dim=-1)
|
211 |
+
|
212 |
+
out = einsum('b i j, b j d -> b i d', attn, v)
|
213 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
|
214 |
+
return self.to_out(out)
|
215 |
+
|
216 |
+
|
217 |
+
class BasicTransformerBlock(nn.Module):
|
218 |
+
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
219 |
+
super().__init__()
|
220 |
+
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
221 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
222 |
+
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
223 |
+
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
224 |
+
self.norm1 = nn.LayerNorm(dim)
|
225 |
+
self.norm2 = nn.LayerNorm(dim)
|
226 |
+
self.norm3 = nn.LayerNorm(dim)
|
227 |
+
self.checkpoint = checkpoint
|
228 |
+
|
229 |
+
def forward(self, x, context=None):
|
230 |
+
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
231 |
+
|
232 |
+
def _forward(self, x, context=None):
|
233 |
+
x = self.attn1(self.norm1(x)) + x
|
234 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
235 |
+
x = self.ff(self.norm3(x)) + x
|
236 |
+
return x
|
237 |
+
|
238 |
+
|
239 |
+
class SpatialTransformer(nn.Module):
|
240 |
+
"""
|
241 |
+
Transformer block for image-like data.
|
242 |
+
First, project the input (aka embedding)
|
243 |
+
and reshape to b, t, d.
|
244 |
+
Then apply standard transformer action.
|
245 |
+
Finally, reshape to image
|
246 |
+
"""
|
247 |
+
def __init__(self, in_channels, n_heads, d_head,
|
248 |
+
depth=1, dropout=0., context_dim=None):
|
249 |
+
super().__init__()
|
250 |
+
self.in_channels = in_channels
|
251 |
+
inner_dim = n_heads * d_head
|
252 |
+
self.norm = Normalize(in_channels)
|
253 |
+
|
254 |
+
self.proj_in = nn.Conv2d(in_channels,
|
255 |
+
inner_dim,
|
256 |
+
kernel_size=1,
|
257 |
+
stride=1,
|
258 |
+
padding=0)
|
259 |
+
|
260 |
+
self.transformer_blocks = nn.ModuleList(
|
261 |
+
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
262 |
+
for d in range(depth)]
|
263 |
+
)
|
264 |
+
|
265 |
+
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
266 |
+
in_channels,
|
267 |
+
kernel_size=1,
|
268 |
+
stride=1,
|
269 |
+
padding=0))
|
270 |
+
|
271 |
+
def forward(self, x, context=None):
|
272 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
273 |
+
b, c, h, w = x.shape
|
274 |
+
x_in = x
|
275 |
+
x = self.norm(x)
|
276 |
+
x = self.proj_in(x)
|
277 |
+
x = rearrange(x, 'b c h w -> b (h w) c')
|
278 |
+
for block in self.transformer_blocks:
|
279 |
+
x = block(x, context=context)
|
280 |
+
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
281 |
+
x = self.proj_out(x)
|
282 |
+
return x + x_in
|
283 |
+
|
284 |
+
|
285 |
+
class MemoryEfficientCrossAttention(nn.Module):
|
286 |
+
# https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
287 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
288 |
+
super().__init__()
|
289 |
+
print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
|
290 |
+
f"{heads} heads.")
|
291 |
+
inner_dim = dim_head * heads
|
292 |
+
context_dim = default(context_dim, query_dim)
|
293 |
+
|
294 |
+
self.heads = heads
|
295 |
+
self.dim_head = dim_head
|
296 |
+
|
297 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
298 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
299 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
300 |
+
|
301 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
302 |
+
self.attention_op: Optional[Any] = None
|
303 |
+
|
304 |
+
def forward(self, x, context=None, mask=None):
|
305 |
+
q = self.to_q(x)
|
306 |
+
context = default(context, x)
|
307 |
+
k = self.to_k(context)
|
308 |
+
v = self.to_v(context)
|
309 |
+
|
310 |
+
b, _, _ = q.shape
|
311 |
+
q, k, v = map(
|
312 |
+
lambda t: t.unsqueeze(3)
|
313 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
314 |
+
.permute(0, 2, 1, 3)
|
315 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
316 |
+
.contiguous(),
|
317 |
+
(q, k, v),
|
318 |
+
)
|
319 |
+
|
320 |
+
# actually compute the attention, what we cannot get enough of
|
321 |
+
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
|
322 |
+
|
323 |
+
if exists(mask):
|
324 |
+
raise NotImplementedError
|
325 |
+
out = (
|
326 |
+
out.unsqueeze(0)
|
327 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
328 |
+
.permute(0, 2, 1, 3)
|
329 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
330 |
+
)
|
331 |
+
return self.to_out(out)
|