jadechoghari
commited on
Create util.py
Browse files- unet/util.py +300 -0
unet/util.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adopted from
|
2 |
+
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
3 |
+
# and
|
4 |
+
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
5 |
+
# and
|
6 |
+
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
7 |
+
#
|
8 |
+
# thanks!
|
9 |
+
|
10 |
+
|
11 |
+
import os
|
12 |
+
import math
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import numpy as np
|
16 |
+
from einops import repeat
|
17 |
+
|
18 |
+
def instantiate_from_config(config):
|
19 |
+
if not "target" in config:
|
20 |
+
if config == '__is_first_stage__':
|
21 |
+
return None
|
22 |
+
elif config == "__is_unconditional__":
|
23 |
+
return None
|
24 |
+
raise KeyError("Expected key `target` to instantiate.")
|
25 |
+
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
26 |
+
|
27 |
+
|
28 |
+
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
29 |
+
if schedule == "linear":
|
30 |
+
betas = (
|
31 |
+
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
32 |
+
)
|
33 |
+
|
34 |
+
elif schedule == "cosine":
|
35 |
+
timesteps = (
|
36 |
+
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
37 |
+
)
|
38 |
+
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
39 |
+
alphas = torch.cos(alphas).pow(2)
|
40 |
+
alphas = alphas / alphas[0]
|
41 |
+
betas = 1 - alphas[1:] / alphas[:-1]
|
42 |
+
betas = np.clip(betas, a_min=0, a_max=0.999)
|
43 |
+
|
44 |
+
elif schedule == "sqrt_linear":
|
45 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
46 |
+
elif schedule == "sqrt":
|
47 |
+
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
48 |
+
else:
|
49 |
+
raise ValueError(f"schedule '{schedule}' unknown.")
|
50 |
+
return betas.numpy()
|
51 |
+
|
52 |
+
|
53 |
+
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
54 |
+
verbose = True
|
55 |
+
if ddim_discr_method == 'uniform':
|
56 |
+
c = num_ddpm_timesteps // num_ddim_timesteps
|
57 |
+
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
58 |
+
elif ddim_discr_method == 'quad':
|
59 |
+
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddim_timesteps), num_ddim_timesteps)) ** 2).astype(int)
|
60 |
+
ddim_timesteps = ddim_timesteps.max() - ddim_timesteps
|
61 |
+
ddim_timesteps.sort()
|
62 |
+
else:
|
63 |
+
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
64 |
+
|
65 |
+
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
66 |
+
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
67 |
+
steps_out = ddim_timesteps + 1 if ddim_timesteps[-1] != (num_ddpm_timesteps-1) else ddim_timesteps
|
68 |
+
if verbose:
|
69 |
+
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
70 |
+
print(f"using {ddim_discr_method} discretization method")
|
71 |
+
return steps_out
|
72 |
+
|
73 |
+
|
74 |
+
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
75 |
+
try:
|
76 |
+
# select alphas for computing the variance schedule
|
77 |
+
alphas = alphacums[ddim_timesteps]
|
78 |
+
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
79 |
+
except:
|
80 |
+
breakpoint()
|
81 |
+
|
82 |
+
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
83 |
+
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
84 |
+
if verbose:
|
85 |
+
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
86 |
+
print(f'For the chosen value of eta, which is {eta}, '
|
87 |
+
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
88 |
+
return sigmas, alphas, alphas_prev
|
89 |
+
|
90 |
+
|
91 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
92 |
+
"""
|
93 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
94 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
95 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
96 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
97 |
+
produces the cumulative product of (1-beta) up to that
|
98 |
+
part of the diffusion process.
|
99 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
100 |
+
prevent singularities.
|
101 |
+
"""
|
102 |
+
betas = []
|
103 |
+
for i in range(num_diffusion_timesteps):
|
104 |
+
t1 = i / num_diffusion_timesteps
|
105 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
106 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
107 |
+
return np.array(betas)
|
108 |
+
|
109 |
+
|
110 |
+
def extract_into_tensor(a, t, x_shape):
|
111 |
+
b, *_ = t.shape
|
112 |
+
out = a.gather(-1, t)
|
113 |
+
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
114 |
+
|
115 |
+
|
116 |
+
def checkpoint(func, inputs, params, flag):
|
117 |
+
"""
|
118 |
+
Evaluate a function without caching intermediate activations, allowing for
|
119 |
+
reduced memory at the expense of extra compute in the backward pass.
|
120 |
+
:param func: the function to evaluate.
|
121 |
+
:param inputs: the argument sequence to pass to `func`.
|
122 |
+
:param params: a sequence of parameters `func` depends on but does not
|
123 |
+
explicitly take as arguments.
|
124 |
+
:param flag: if False, disable gradient checkpointing.
|
125 |
+
"""
|
126 |
+
if False: # disabled checkpointing to allow requires_grad = False for main model
|
127 |
+
args = tuple(inputs) + tuple(params)
|
128 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
129 |
+
else:
|
130 |
+
return func(*inputs)
|
131 |
+
|
132 |
+
|
133 |
+
class CheckpointFunction(torch.autograd.Function):
|
134 |
+
@staticmethod
|
135 |
+
def forward(ctx, run_function, length, *args):
|
136 |
+
ctx.run_function = run_function
|
137 |
+
ctx.input_tensors = list(args[:length])
|
138 |
+
ctx.input_params = list(args[length:])
|
139 |
+
|
140 |
+
with torch.no_grad():
|
141 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
142 |
+
return output_tensors
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
def backward(ctx, *output_grads):
|
146 |
+
try:
|
147 |
+
# ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
148 |
+
ctx_input_tensors = []
|
149 |
+
for x in ctx.input_tensors:
|
150 |
+
if x.requires_grad:
|
151 |
+
ctx_input_tensors.append(x.detach().requires_grad_(True))
|
152 |
+
else:
|
153 |
+
ctx_input_tensors.append(x.detach())
|
154 |
+
ctx.input_tensors = ctx_input_tensors
|
155 |
+
except:
|
156 |
+
breakpoint()
|
157 |
+
|
158 |
+
with torch.enable_grad():
|
159 |
+
# Fixes a bug where the first op in run_function modifies the
|
160 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
161 |
+
# Tensors.
|
162 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
163 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
164 |
+
|
165 |
+
input_grads = torch.autograd.grad(
|
166 |
+
output_tensors,
|
167 |
+
ctx.input_tensors + ctx.input_params,
|
168 |
+
output_grads,
|
169 |
+
allow_unused=True,
|
170 |
+
)
|
171 |
+
|
172 |
+
|
173 |
+
del ctx.input_tensors
|
174 |
+
del ctx.input_params
|
175 |
+
del output_tensors
|
176 |
+
return (None, None) + input_grads
|
177 |
+
|
178 |
+
|
179 |
+
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
180 |
+
"""
|
181 |
+
Create sinusoidal timestep embeddings.
|
182 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
183 |
+
These may be fractional.
|
184 |
+
:param dim: the dimension of the output.
|
185 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
186 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
187 |
+
"""
|
188 |
+
if not repeat_only:
|
189 |
+
half = dim // 2
|
190 |
+
freqs = torch.exp(
|
191 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
192 |
+
).to(device=timesteps.device)
|
193 |
+
args = timesteps[:, None].float() * freqs[None]
|
194 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
195 |
+
if dim % 2:
|
196 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
197 |
+
else:
|
198 |
+
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
199 |
+
return embedding
|
200 |
+
|
201 |
+
|
202 |
+
def zero_module(module):
|
203 |
+
"""
|
204 |
+
Zero out the parameters of a module and return it.
|
205 |
+
"""
|
206 |
+
for p in module.parameters():
|
207 |
+
p.detach().zero_()
|
208 |
+
return module
|
209 |
+
|
210 |
+
|
211 |
+
def scale_module(module, scale):
|
212 |
+
"""
|
213 |
+
Scale the parameters of a module and return it.
|
214 |
+
"""
|
215 |
+
for p in module.parameters():
|
216 |
+
p.detach().mul_(scale)
|
217 |
+
return module
|
218 |
+
|
219 |
+
|
220 |
+
def mean_flat(tensor):
|
221 |
+
"""
|
222 |
+
Take the mean over all non-batch dimensions.
|
223 |
+
"""
|
224 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
225 |
+
|
226 |
+
|
227 |
+
def normalization(channels):
|
228 |
+
"""
|
229 |
+
Make a standard normalization layer.
|
230 |
+
:param channels: number of input channels.
|
231 |
+
:return: an nn.Module for normalization.
|
232 |
+
"""
|
233 |
+
return GroupNorm32(32, channels)
|
234 |
+
|
235 |
+
|
236 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
237 |
+
class SiLU(nn.Module):
|
238 |
+
def forward(self, x):
|
239 |
+
return x * torch.sigmoid(x)
|
240 |
+
|
241 |
+
|
242 |
+
class GroupNorm32(nn.GroupNorm):
|
243 |
+
def forward(self, x):
|
244 |
+
return super().forward(x.float()).type(x.dtype)
|
245 |
+
|
246 |
+
def conv_nd(dims, *args, **kwargs):
|
247 |
+
"""
|
248 |
+
Create a 1D, 2D, or 3D convolution module.
|
249 |
+
"""
|
250 |
+
if dims == 1:
|
251 |
+
return nn.Conv1d(*args, **kwargs)
|
252 |
+
elif dims == 2:
|
253 |
+
return nn.Conv2d(*args, **kwargs)
|
254 |
+
elif dims == 3:
|
255 |
+
return nn.Conv3d(*args, **kwargs)
|
256 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
257 |
+
|
258 |
+
|
259 |
+
def linear(*args, **kwargs):
|
260 |
+
"""
|
261 |
+
Create a linear module.
|
262 |
+
"""
|
263 |
+
return nn.Linear(*args, **kwargs)
|
264 |
+
|
265 |
+
|
266 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
267 |
+
"""
|
268 |
+
Create a 1D, 2D, or 3D average pooling module.
|
269 |
+
"""
|
270 |
+
if dims == 1:
|
271 |
+
return nn.AvgPool1d(*args, **kwargs)
|
272 |
+
elif dims == 2:
|
273 |
+
return nn.AvgPool2d(*args, **kwargs)
|
274 |
+
elif dims == 3:
|
275 |
+
return nn.AvgPool3d(*args, **kwargs)
|
276 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
277 |
+
|
278 |
+
|
279 |
+
class HybridConditioner(nn.Module):
|
280 |
+
|
281 |
+
def __init__(self, c_concat_config, c_crossattn_config):
|
282 |
+
super().__init__()
|
283 |
+
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
284 |
+
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
285 |
+
|
286 |
+
def forward(self, c_concat, c_crossattn):
|
287 |
+
c_concat = self.concat_conditioner(c_concat)
|
288 |
+
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
289 |
+
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
290 |
+
|
291 |
+
|
292 |
+
def noise_like(shape, device, repeat=False):
|
293 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
294 |
+
noise = lambda: torch.randn(shape, device=device)
|
295 |
+
return repeat_noise() if repeat else noise()
|
296 |
+
|
297 |
+
if __name__ == "__main__":
|
298 |
+
timesteps = torch.randint(0, 1000, (6,)).long()
|
299 |
+
breakpoint()
|
300 |
+
t_emb = timestep_embedding(timesteps, 320, repeat_only=False)
|