jadechoghari commited on
Commit
e53e4fc
·
verified ·
1 Parent(s): 4bb4e0f

Create pipeline_spad.py

Browse files

this is just an experiment, not the perfect spad, more work to do (fix upcoming bugs)

Files changed (1) hide show
  1. pipeline_spad.py +68 -0
pipeline_spad.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from diffusers import AutoencoderKL, DiffusionPipeline
3
+ from transformers import CLIPTextModel, CLIPTokenizer
4
+ from mv_unet import SPADUnetModel
5
+ from diffusers.schedulers import DPMSolverMultistepScheduler
6
+
7
+ class SPADPipeline(DiffusionPipeline):
8
+ def __init__(
9
+ self,
10
+ vae: AutoencoderKL,
11
+ unet: SPADUnetModel,
12
+ tokenizer: CLIPTokenizer,
13
+ text_encoder: CLIPTextModel,
14
+ scheduler: DPMSolverMultistepScheduler,
15
+ ):
16
+ super().__init__()
17
+
18
+ self.vae = vae
19
+ self.unet = unet
20
+ self.tokenizer = tokenizer
21
+ self.text_encoder = text_encoder
22
+ self.scheduler = scheduler
23
+
24
+ # make sure all our models are on the same device
25
+ self.vae.to(self.device)
26
+ self.unet.to(self.device)
27
+ self.text_encoder.to(self.device)
28
+
29
+ def encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None):
30
+ text_input = self.tokenizer(
31
+ prompt,
32
+ padding="max_length",
33
+ max_length=self.tokenizer.model_max_length,
34
+ return_tensors="pt"
35
+ )
36
+ text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
37
+
38
+ # we duplicate the text embeddings for each generation, just to save time :)
39
+ bs_embed, seq_len, _ = text_embeddings.shape
40
+ text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
41
+ text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
42
+
43
+ return text_embeddings
44
+
45
+ def __call__(self, prompt, num_inference_steps=50, guidance_scale=7.5):
46
+ # encide the prompt into the text embeddings
47
+ text_embeddings = self.encode_prompt(prompt, self.device, 1, do_classifier_free_guidance=False)
48
+
49
+ # this is the initial noise sample
50
+ latents = torch.randn(
51
+ (text_embeddings.shape[0], self.unet.in_channels, self.unet.image_size, self.unet.image_size),
52
+ device=self.device
53
+ )
54
+
55
+ # setting up the scheduler
56
+ self.scheduler.set_timesteps(num_inference_steps)
57
+
58
+ # iterate and generate
59
+ for t in self.scheduler.timesteps:
60
+ latents = self.scheduler.scale_model_input(latents, t)
61
+ latents = self.unet(latents, t, text_embeddings)["sample"]
62
+ latents = self.scheduler.step(latents, t, latents, guidance_scale=guidance_scale)["prev_sample"]
63
+
64
+ # decode latents into images
65
+ images = self.vae.decode(latents)
66
+ images = (images / 2 + 0.5).clamp(0, 1)
67
+
68
+ return images