Create processor.py
Browse filesthis is the processor of vfusion3d
- processor.py +88 -0
processor.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
import importlib
|
3 |
+
import sys
|
4 |
+
|
5 |
+
# a helper function to install packages
|
6 |
+
def install_package(package_name):
|
7 |
+
if importlib.util.find_spec(package_name) is None:
|
8 |
+
logger.info(f"Package '{package_name}' not found. Installing...")
|
9 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package_name])
|
10 |
+
else:
|
11 |
+
logger.info(f"Package '{package_name}' is already installed.")
|
12 |
+
# we ensure the necessary packages are installed
|
13 |
+
packages = [
|
14 |
+
'imageio[ffmpeg]', 'PyMCubes', 'trimesh', 'rembg[gpu,cli]', 'kiui', 'torchvision', 'Pillow'
|
15 |
+
]
|
16 |
+
for package in packages:
|
17 |
+
install_package(package)
|
18 |
+
|
19 |
+
# only then we import the packages after installation
|
20 |
+
import torch
|
21 |
+
import numpy as np
|
22 |
+
from rembg import remove, new_session
|
23 |
+
from functools import partial
|
24 |
+
from torchvision.utils import save_image
|
25 |
+
from PIL import Image
|
26 |
+
from kiui.op import recenter
|
27 |
+
import kiui
|
28 |
+
|
29 |
+
class LRMImageProcessor:
|
30 |
+
def __init__(self, source_size=512, *args, **kwargs):
|
31 |
+
super().__init__(*args, **kwargs)
|
32 |
+
self.source_size = source_size
|
33 |
+
self.session = new_session("isnet-general-use")
|
34 |
+
self.rembg_remove = partial(remove, session=self.session)
|
35 |
+
|
36 |
+
def preprocess_image(self, image):
|
37 |
+
image = np.array(image)
|
38 |
+
image = self.rembg_remove(image)
|
39 |
+
mask = self.rembg_remove(image, only_mask=True)
|
40 |
+
image = recenter(image, mask, border_ratio=0.20)
|
41 |
+
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
|
42 |
+
if image.shape[1] == 4:
|
43 |
+
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
|
44 |
+
image = torch.nn.functional.interpolate(image, size=(self.source_size, self.source_size), mode='bicubic', align_corners=True)
|
45 |
+
image = torch.clamp(image, 0, 1)
|
46 |
+
return image
|
47 |
+
|
48 |
+
def get_normalized_camera_intrinsics(self, intrinsics: torch.Tensor):
|
49 |
+
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
|
50 |
+
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
|
51 |
+
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
|
52 |
+
fx, fy = fx / width, fy / height
|
53 |
+
cx, cy = cx / width, cy / height
|
54 |
+
return fx, fy, cx, cy
|
55 |
+
|
56 |
+
def build_camera_principle(self, RT: torch.Tensor, intrinsics: torch.Tensor):
|
57 |
+
fx, fy, cx, cy = self.get_normalized_camera_intrinsics(intrinsics)
|
58 |
+
return torch.cat([
|
59 |
+
RT.reshape(-1, 12),
|
60 |
+
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
|
61 |
+
], dim=-1)
|
62 |
+
|
63 |
+
def _default_intrinsics(self):
|
64 |
+
fx = fy = 384
|
65 |
+
cx = cy = 256
|
66 |
+
w = h = 512
|
67 |
+
intrinsics = torch.tensor([
|
68 |
+
[fx, fy],
|
69 |
+
[cx, cy],
|
70 |
+
[w, h],
|
71 |
+
], dtype=torch.float32)
|
72 |
+
return intrinsics
|
73 |
+
|
74 |
+
def _default_source_camera(self, batch_size: int = 1):
|
75 |
+
dist_to_center = 1.5
|
76 |
+
canonical_camera_extrinsics = torch.tensor([[
|
77 |
+
[0, 0, 1, 1],
|
78 |
+
[1, 0, 0, 0],
|
79 |
+
[0, 1, 0, 0],
|
80 |
+
]], dtype=torch.float32)
|
81 |
+
canonical_camera_intrinsics = self._default_intrinsics().unsqueeze(0)
|
82 |
+
source_camera = self.build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
|
83 |
+
return source_camera.repeat(batch_size, 1)
|
84 |
+
|
85 |
+
def __call__(self, image, *args, **kwargs):
|
86 |
+
processed_image = self.preprocess_image(image)
|
87 |
+
source_camera = self._default_source_camera(batch_size=1)
|
88 |
+
return processed_image, source_camera
|