jaeger1 commited on
Commit
19dfcfc
·
1 Parent(s): ee512ab

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - funsd
6
+ model-index:
7
+ - name: layoutlm-funsd
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # layoutlm-funsd
15
+
16
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.6866
19
+ - Answer: {'precision': 0.7205720572057206, 'recall': 0.8096415327564895, 'f1': 0.7625145518044238, 'number': 809}
20
+ - Header: {'precision': 0.3181818181818182, 'recall': 0.35294117647058826, 'f1': 0.3346613545816733, 'number': 119}
21
+ - Question: {'precision': 0.7839506172839507, 'recall': 0.8347417840375587, 'f1': 0.8085493406093679, 'number': 1065}
22
+ - Overall Precision: 0.7292
23
+ - Overall Recall: 0.7958
24
+ - Overall F1: 0.7610
25
+ - Overall Accuracy: 0.8048
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 3e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 15
51
+ - mixed_precision_training: Native AMP
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 1.8292 | 1.0 | 10 | 1.6076 | {'precision': 0.014943960149439602, 'recall': 0.014833127317676144, 'f1': 0.01488833746898263, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.2132564841498559, 'recall': 0.13896713615023473, 'f1': 0.16827743035815804, 'number': 1065} | 0.1069 | 0.0803 | 0.0917 | 0.3499 |
58
+ | 1.4992 | 2.0 | 20 | 1.2649 | {'precision': 0.15553121577217963, 'recall': 0.17552533992583436, 'f1': 0.16492450638792103, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.45795107033639143, 'recall': 0.5624413145539906, 'f1': 0.5048461862621155, 'number': 1065} | 0.3336 | 0.3718 | 0.3517 | 0.5779 |
59
+ | 1.127 | 3.0 | 30 | 0.9502 | {'precision': 0.4658981748318924, 'recall': 0.5995055624227441, 'f1': 0.5243243243243242, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.6047904191616766, 'recall': 0.6638497652582159, 'f1': 0.6329453894359892, 'number': 1065} | 0.5379 | 0.5981 | 0.5664 | 0.6835 |
60
+ | 0.8468 | 4.0 | 40 | 0.8052 | {'precision': 0.5737240075614367, 'recall': 0.7503090234857849, 'f1': 0.6502410283877879, 'number': 809} | {'precision': 0.15, 'recall': 0.05042016806722689, 'f1': 0.07547169811320754, 'number': 119} | {'precision': 0.672231985940246, 'recall': 0.7183098591549296, 'f1': 0.6945074897866546, 'number': 1065} | 0.6163 | 0.6914 | 0.6517 | 0.7343 |
61
+ | 0.706 | 5.0 | 50 | 0.7191 | {'precision': 0.6361655773420479, 'recall': 0.7218788627935723, 'f1': 0.6763173132599883, 'number': 809} | {'precision': 0.18055555555555555, 'recall': 0.1092436974789916, 'f1': 0.13612565445026178, 'number': 119} | {'precision': 0.6922435362802335, 'recall': 0.7793427230046949, 'f1': 0.7332155477031801, 'number': 1065} | 0.6519 | 0.7160 | 0.6824 | 0.7683 |
62
+ | 0.5832 | 6.0 | 60 | 0.6846 | {'precision': 0.6547231270358306, 'recall': 0.7453646477132262, 'f1': 0.6971098265895953, 'number': 809} | {'precision': 0.21951219512195122, 'recall': 0.15126050420168066, 'f1': 0.1791044776119403, 'number': 119} | {'precision': 0.6936866718628215, 'recall': 0.8356807511737089, 'f1': 0.75809199318569, 'number': 1065} | 0.6610 | 0.7582 | 0.7062 | 0.7898 |
63
+ | 0.5197 | 7.0 | 70 | 0.6586 | {'precision': 0.6821621621621622, 'recall': 0.7799752781211372, 'f1': 0.7277970011534025, 'number': 809} | {'precision': 0.23469387755102042, 'recall': 0.19327731092436976, 'f1': 0.2119815668202765, 'number': 119} | {'precision': 0.7302363488182559, 'recall': 0.8413145539906103, 'f1': 0.7818499127399652, 'number': 1065} | 0.6889 | 0.7777 | 0.7306 | 0.7931 |
64
+ | 0.4622 | 8.0 | 80 | 0.6479 | {'precision': 0.6830601092896175, 'recall': 0.7725587144622992, 'f1': 0.7250580046403712, 'number': 809} | {'precision': 0.2540983606557377, 'recall': 0.2605042016806723, 'f1': 0.2572614107883818, 'number': 119} | {'precision': 0.7464553794829024, 'recall': 0.8403755868544601, 'f1': 0.7906360424028268, 'number': 1065} | 0.6936 | 0.7782 | 0.7335 | 0.7983 |
65
+ | 0.4162 | 9.0 | 90 | 0.6500 | {'precision': 0.6911447084233261, 'recall': 0.7911001236093943, 'f1': 0.7377521613832853, 'number': 809} | {'precision': 0.3008130081300813, 'recall': 0.31092436974789917, 'f1': 0.3057851239669422, 'number': 119} | {'precision': 0.7659574468085106, 'recall': 0.8450704225352113, 'f1': 0.8035714285714286, 'number': 1065} | 0.7091 | 0.7913 | 0.7479 | 0.8010 |
66
+ | 0.3644 | 10.0 | 100 | 0.6503 | {'precision': 0.7041484716157205, 'recall': 0.7972805933250927, 'f1': 0.7478260869565218, 'number': 809} | {'precision': 0.3247863247863248, 'recall': 0.31932773109243695, 'f1': 0.3220338983050848, 'number': 119} | {'precision': 0.7757885763000852, 'recall': 0.8544600938967136, 'f1': 0.8132260947274352, 'number': 1065} | 0.7221 | 0.7993 | 0.7588 | 0.8078 |
67
+ | 0.3255 | 11.0 | 110 | 0.6716 | {'precision': 0.7108953613807982, 'recall': 0.8145859085290482, 'f1': 0.7592165898617511, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.3277310924369748, 'f1': 0.3305084745762712, 'number': 119} | {'precision': 0.7852112676056338, 'recall': 0.8375586854460094, 'f1': 0.8105406633348478, 'number': 1065} | 0.7294 | 0.7978 | 0.7620 | 0.8026 |
68
+ | 0.3154 | 12.0 | 120 | 0.6760 | {'precision': 0.7207505518763797, 'recall': 0.8071693448702101, 'f1': 0.7615160349854228, 'number': 809} | {'precision': 0.3140495867768595, 'recall': 0.31932773109243695, 'f1': 0.31666666666666665, 'number': 119} | {'precision': 0.7812773403324584, 'recall': 0.8384976525821596, 'f1': 0.8088768115942028, 'number': 1065} | 0.7300 | 0.7948 | 0.7610 | 0.8039 |
69
+ | 0.2872 | 13.0 | 130 | 0.6777 | {'precision': 0.7232635060639471, 'recall': 0.8108776266996292, 'f1': 0.7645687645687645, 'number': 809} | {'precision': 0.31451612903225806, 'recall': 0.3277310924369748, 'f1': 0.32098765432098764, 'number': 119} | {'precision': 0.7841601392515231, 'recall': 0.8460093896713615, 'f1': 0.8139114724480578, 'number': 1065} | 0.7321 | 0.8008 | 0.7649 | 0.8055 |
70
+ | 0.2775 | 14.0 | 140 | 0.6824 | {'precision': 0.7250821467688937, 'recall': 0.8182941903584673, 'f1': 0.7688734030197445, 'number': 809} | {'precision': 0.31007751937984496, 'recall': 0.33613445378151263, 'f1': 0.3225806451612903, 'number': 119} | {'precision': 0.7839506172839507, 'recall': 0.8347417840375587, 'f1': 0.8085493406093679, 'number': 1065} | 0.7312 | 0.7983 | 0.7633 | 0.8048 |
71
+ | 0.2744 | 15.0 | 150 | 0.6866 | {'precision': 0.7205720572057206, 'recall': 0.8096415327564895, 'f1': 0.7625145518044238, 'number': 809} | {'precision': 0.3181818181818182, 'recall': 0.35294117647058826, 'f1': 0.3346613545816733, 'number': 119} | {'precision': 0.7839506172839507, 'recall': 0.8347417840375587, 'f1': 0.8085493406093679, 'number': 1065} | 0.7292 | 0.7958 | 0.7610 | 0.8048 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.29.2
77
+ - Pytorch 2.0.1+cu118
78
+ - Datasets 2.12.0
79
+ - Tokenizers 0.13.3
logs/events.out.tfevents.1685639414.kimv.12176.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3ad6f596067474c8724e1076c73080980f3a51e966da542e8d1121320ea17f40
3
- size 4918
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a7b5131c452f4510058088be62f3bb875ee2445704b778522c2c83a3f72f368
3
+ size 14394
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "feature_extractor_type": "LayoutLMv2FeatureExtractor",
5
+ "image_processor_type": "LayoutLMv2ImageProcessor",
6
+ "ocr_lang": null,
7
+ "processor_class": "LayoutLMv2Processor",
8
+ "resample": 2,
9
+ "size": {
10
+ "height": 224,
11
+ "width": 224
12
+ },
13
+ "tesseract_config": ""
14
+ }
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9d6d4b72979958064f8c6d4cacd87670fadd26ffe2a470c4eb5cccb563c280c2
3
  size 450608389
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7c980afe5961ef8d3f9879b63d5dee1c0c0080fcc779f72b14fccb2164b9349
3
  size 450608389
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": null,
3
+ "apply_ocr": false,
4
+ "clean_up_tokenization_spaces": true,
5
+ "cls_token": "[CLS]",
6
+ "cls_token_box": [
7
+ 0,
8
+ 0,
9
+ 0,
10
+ 0
11
+ ],
12
+ "do_basic_tokenize": true,
13
+ "do_lower_case": true,
14
+ "mask_token": "[MASK]",
15
+ "model_max_length": 512,
16
+ "never_split": null,
17
+ "only_label_first_subword": true,
18
+ "pad_token": "[PAD]",
19
+ "pad_token_box": [
20
+ 0,
21
+ 0,
22
+ 0,
23
+ 0
24
+ ],
25
+ "pad_token_label": -100,
26
+ "processor_class": "LayoutLMv2Processor",
27
+ "sep_token": "[SEP]",
28
+ "sep_token_box": [
29
+ 1000,
30
+ 1000,
31
+ 1000,
32
+ 1000
33
+ ],
34
+ "strip_accents": null,
35
+ "tokenize_chinese_chars": true,
36
+ "tokenizer_class": "LayoutLMv2Tokenizer",
37
+ "unk_token": "[UNK]"
38
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff