File size: 3,420 Bytes
077736b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f16991
 
13de82b
 
 
e8e8574
13de82b
 
077736b
 
516ec12
 
 
 
 
 
9f100cc
 
 
 
 
 
 
 
 
 
 
 
 
077736b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
library_name: transformers
tags: []
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->



## Model Details



## Evaluation


### llm-jp-eval script(colab)
```
!git clone https://github.com/llm-jp/llm-jp-eval.git
!cd llm-jp-eval && pip install -e .
!cd llm-jp-eval && python scripts/preprocess_dataset.py --dataset-name all --output-dir ./dataset_dir
!cd llm-jp-eval && python scripts/evaluate_llm.py -cn config.yaml model.pretrained_model_name_or_path=jaeyong2/Qwen2.5-0.5B-Instruct-JaMagpie-Preview tokenizer.pretrained_model_name_or_path=jaeyong2/Qwen2.5-0.5B-Instruct-JaMagpie-Preview dataset_dir=./dataset_dir/1.4.1/evaluation/test
```

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

|            | Qwen2.5-0.5B-Instruct | finetuning-model       |
|:-----------|----------------------:|-----------------------:|
| mmlu       |  0.4592               | 0.4614                 |



| llm-jp-eval| Qwen2.5-0.5B-Instruct | finetuning-model       |
|:-----------|----------------------:|-----------------------:|
| AVG        |  0.3037               | 0.3176                 |
| CG         |  0                    | 0                      |
| EL         |  0.2637               | 0.3146                 |
| FA         |  0.0386               | 0.0419                 |
| HE         |  0.2700               | 0.3250                 |
| MC         |  0.4033               | 0.3733                 |
| MR         |  0.0900               | 0.2700                 |
| MT         |  0.6148               | 0.6691                 |
| NLI        |  0.5460               | 0.3180                 |
| QA         |  0.2608               | 0.2791                 |
| RC         |  0.5495               | 0.5847                 |
### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]