jaeyong2 commited on
Commit
8ebec20
1 Parent(s): 9b79c0e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -171
README.md CHANGED
@@ -1,6 +1,12 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
@@ -11,189 +17,98 @@ tags: []
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
186
 
187
- [More Information Needed]
 
 
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
 
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - jaeyong2/Thai-emb-PreView
6
+ language:
7
+ - th
8
+ base_model:
9
+ - Alibaba-NLP/gte-multilingual-base
10
  ---
11
 
12
  # Model Card for Model ID
 
17
 
18
  ## Model Details
19
 
 
20
 
21
+ ## Train
22
+
23
+ - H/W : colab A100 40GB
24
+ - Data : jaeyong2/Thai-emb-PreView
25
+
26
+ ```
27
+ model_name = "Alibaba-NLP/gte-multilingual-base"
28
+ dataset = datasets.load_dataset("jaeyong2/Thai-emb-PreView")
29
+ train_dataloader = DataLoader(dataset['train'], batch_size=8, shuffle=True)
30
+
31
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
32
+ model = AutoModel.from_pretrained(model_name).to(torch.bfloat16)
33
+ triplet_loss = TripletLoss(margin=1.0)
34
+
35
+ optimizer = AdamW(model.parameters(), lr=5e-5)
36
+
37
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
38
+ model.to(device)
39
+
40
+ for epoch in range(3): # 에포크 반복
41
+ model.train()
42
+ total_loss = 0
43
+ count = 0
44
+ for batch in tqdm(train_dataloader):
45
+ optimizer.zero_grad()
46
+ loss = None
47
+ for index in range(len(batch["context"])):
48
+ anchor_encodings = tokenizer([batch["context"][index]], truncation=True, padding="max_length", max_length=4096, return_tensors="pt")
49
+ positive_encodings = tokenizer([batch["Title"][index]], truncation=True, padding="max_length", max_length=256, return_tensors="pt")
50
+ negative_encodings = tokenizer([batch["Fake Title"][index]], truncation=True, padding="max_length", max_length=256, return_tensors="pt")
51
+
52
+ anchor_encodings = batch_to_device(anchor_encodings, device)
53
+ positive_encodings = batch_to_device(positive_encodings, device)
54
+ negative_encodings = batch_to_device(negative_encodings, device)
55
+
56
+ # 모델 출력 (임베딩 벡터 생성)
57
+ anchor_output = model(**anchor_encodings)[0][:, 0, :] # [CLS] 토큰의 벡터
58
+ positive_output = model(**positive_encodings)[0][:, 0, :]
59
+ negative_output = model(**negative_encodings)[0][:, 0, :]
60
+ # 삼중항 손실 계산
61
+ if loss==None:
62
+ loss = triplet_loss(anchor_output, positive_output, negative_output)
63
+ else:
64
+ loss += triplet_loss(anchor_output, positive_output, negative_output)
65
+ loss /= len(batch["context"])
66
+ loss.backward()
67
+ optimizer.step()
68
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
  ## Evaluation
71
 
72
+ Code :
73
+ ```
74
+ import torch
75
+ import numpy as np
76
+ from sklearn.metrics import pairwise_distances
77
+ from tqdm import tqdm
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
 
79
 
80
+ dataset = datasets.load_dataset("jaeyong2/Thai-emb-PreView")
81
+ validation_dataset = dataset["test"].select(range((1000)))
82
 
83
+ model.eval()
84
 
85
+ def evaluate(validation_dataset):
86
+ correct_count = 0
87
 
88
+ for item in tqdm(validation_dataset):
89
+ query_embedding = get_embedding(item["context"], model, tokenizer)
90
+ document_embedding = get_embedding(item["Title"], model, tokenizer)
91
+ negative_embedding = get_embedding(item["Fake Title"], model, tokenizer)
92
+
93
 
94
+ # 쿼리와 모든 문서 간의 유사도 계산 (코사인 거리 사용)
95
+ positive_distances = pairwise_distances(query_embedding.detach().cpu().float().numpy(), document_embedding.detach().cpu().float().numpy(), metric="cosine")
96
+ negative_distances = pairwise_distances(query_embedding.detach().cpu().float().numpy(), negative_embedding.detach().cpu().float().numpy(), metric="cosine")
97
 
98
+ if positive_distances < negative_distances:
99
+ correct_count += 1
100
 
101
+ accuracy = correct_count / len(validation_dataset)
102
+ return accuracy
103
 
104
+ results = evaluate(validation_dataset)
105
+ print(f"Validation Results: {results}")
106
+ ```
107
 
108
+ Accuracy
109
+ - Alibaba-NLP/gte-multilingual-base : 0.953
110
+ - jaeyong2/gte-multilingual-base-Thai-embedding : 0.991
111
 
 
112
 
113
+ ### License
114
+ - Alibaba-NLP/gte-multilingual-base : https://choosealicense.com/licenses/apache-2.0/