Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,12 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
@@ -11,189 +17,98 @@ tags: []
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
-
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
[
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
|
177 |
-
[More Information Needed]
|
178 |
|
179 |
-
|
|
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
|
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
|
|
|
|
188 |
|
189 |
-
|
|
|
190 |
|
191 |
-
|
|
|
192 |
|
193 |
-
|
|
|
|
|
194 |
|
195 |
-
|
|
|
|
|
196 |
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
datasets:
|
5 |
+
- jaeyong2/Thai-emb-PreView
|
6 |
+
language:
|
7 |
+
- th
|
8 |
+
base_model:
|
9 |
+
- Alibaba-NLP/gte-multilingual-base
|
10 |
---
|
11 |
|
12 |
# Model Card for Model ID
|
|
|
17 |
|
18 |
## Model Details
|
19 |
|
|
|
20 |
|
21 |
+
## Train
|
22 |
+
|
23 |
+
- H/W : colab A100 40GB
|
24 |
+
- Data : jaeyong2/Thai-emb-PreView
|
25 |
+
|
26 |
+
```
|
27 |
+
model_name = "Alibaba-NLP/gte-multilingual-base"
|
28 |
+
dataset = datasets.load_dataset("jaeyong2/Thai-emb-PreView")
|
29 |
+
train_dataloader = DataLoader(dataset['train'], batch_size=8, shuffle=True)
|
30 |
+
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
model = AutoModel.from_pretrained(model_name).to(torch.bfloat16)
|
33 |
+
triplet_loss = TripletLoss(margin=1.0)
|
34 |
+
|
35 |
+
optimizer = AdamW(model.parameters(), lr=5e-5)
|
36 |
+
|
37 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
+
model.to(device)
|
39 |
+
|
40 |
+
for epoch in range(3): # 에포크 반복
|
41 |
+
model.train()
|
42 |
+
total_loss = 0
|
43 |
+
count = 0
|
44 |
+
for batch in tqdm(train_dataloader):
|
45 |
+
optimizer.zero_grad()
|
46 |
+
loss = None
|
47 |
+
for index in range(len(batch["context"])):
|
48 |
+
anchor_encodings = tokenizer([batch["context"][index]], truncation=True, padding="max_length", max_length=4096, return_tensors="pt")
|
49 |
+
positive_encodings = tokenizer([batch["Title"][index]], truncation=True, padding="max_length", max_length=256, return_tensors="pt")
|
50 |
+
negative_encodings = tokenizer([batch["Fake Title"][index]], truncation=True, padding="max_length", max_length=256, return_tensors="pt")
|
51 |
+
|
52 |
+
anchor_encodings = batch_to_device(anchor_encodings, device)
|
53 |
+
positive_encodings = batch_to_device(positive_encodings, device)
|
54 |
+
negative_encodings = batch_to_device(negative_encodings, device)
|
55 |
+
|
56 |
+
# 모델 출력 (임베딩 벡터 생성)
|
57 |
+
anchor_output = model(**anchor_encodings)[0][:, 0, :] # [CLS] 토큰의 벡터
|
58 |
+
positive_output = model(**positive_encodings)[0][:, 0, :]
|
59 |
+
negative_output = model(**negative_encodings)[0][:, 0, :]
|
60 |
+
# 삼중항 손실 계산
|
61 |
+
if loss==None:
|
62 |
+
loss = triplet_loss(anchor_output, positive_output, negative_output)
|
63 |
+
else:
|
64 |
+
loss += triplet_loss(anchor_output, positive_output, negative_output)
|
65 |
+
loss /= len(batch["context"])
|
66 |
+
loss.backward()
|
67 |
+
optimizer.step()
|
68 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
## Evaluation
|
71 |
|
72 |
+
Code :
|
73 |
+
```
|
74 |
+
import torch
|
75 |
+
import numpy as np
|
76 |
+
from sklearn.metrics import pairwise_distances
|
77 |
+
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
79 |
|
80 |
+
dataset = datasets.load_dataset("jaeyong2/Thai-emb-PreView")
|
81 |
+
validation_dataset = dataset["test"].select(range((1000)))
|
82 |
|
83 |
+
model.eval()
|
84 |
|
85 |
+
def evaluate(validation_dataset):
|
86 |
+
correct_count = 0
|
87 |
|
88 |
+
for item in tqdm(validation_dataset):
|
89 |
+
query_embedding = get_embedding(item["context"], model, tokenizer)
|
90 |
+
document_embedding = get_embedding(item["Title"], model, tokenizer)
|
91 |
+
negative_embedding = get_embedding(item["Fake Title"], model, tokenizer)
|
92 |
+
|
93 |
|
94 |
+
# 쿼리와 모든 문서 간의 유사도 계산 (코사인 거리 사용)
|
95 |
+
positive_distances = pairwise_distances(query_embedding.detach().cpu().float().numpy(), document_embedding.detach().cpu().float().numpy(), metric="cosine")
|
96 |
+
negative_distances = pairwise_distances(query_embedding.detach().cpu().float().numpy(), negative_embedding.detach().cpu().float().numpy(), metric="cosine")
|
97 |
|
98 |
+
if positive_distances < negative_distances:
|
99 |
+
correct_count += 1
|
100 |
|
101 |
+
accuracy = correct_count / len(validation_dataset)
|
102 |
+
return accuracy
|
103 |
|
104 |
+
results = evaluate(validation_dataset)
|
105 |
+
print(f"Validation Results: {results}")
|
106 |
+
```
|
107 |
|
108 |
+
Accuracy
|
109 |
+
- Alibaba-NLP/gte-multilingual-base : 0.953
|
110 |
+
- jaeyong2/gte-multilingual-base-Thai-embedding : 0.991
|
111 |
|
|
|
112 |
|
113 |
+
### License
|
114 |
+
- Alibaba-NLP/gte-multilingual-base : https://choosealicense.com/licenses/apache-2.0/
|