jagoldz commited on
Commit
c7f964f
1 Parent(s): b7947ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +39 -0
README.md CHANGED
@@ -1,3 +1,42 @@
1
  ---
2
  license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
+ datasets:
4
+ - jagoldz/gahd
5
+ - Paul/hatecheck-german
6
+ language:
7
+ - de
8
+ metrics:
9
+ - f1
10
+ library_name: transformers
11
+ pipeline_tag: text-classification
12
+ tags:
13
+ - hate-speech-detection
14
+ - hate-speech
15
  ---
16
+
17
+ # Model Card
18
+
19
+ ## Model Description
20
+
21
+ We fine-tuned this [gelectra-large model](https://huggingface.co/deepset/gelectra-large) for four rounds of dynamic adversarial data collection to create the GAHD dataset. In each round annotators created examples by trying to trick the model into a misclassification. We explored different ways of supporting annotators in finding model-tricking examples during the data collection. This is the final model (R4) in our paper. The model classifies text into "hate speech" (1) or "not-hate speech" (0).
22
+
23
+ Please check out our [paper](https://arxiv.org/abs/2403.19559) for further details about the training procedure (Appendix C) or evaluation (Section 4).
24
+
25
+ - paper: https://arxiv.org/abs/2403.19559
26
+ - GAHD dataset on Huggingface: https://huggingface.co/datasets/jagoldz/gahd
27
+ - GAHD dataset on GitHub: https://github.com/jagol/gahd
28
+
29
+ ## Citation
30
+
31
+ When using this model or the GAHD dataset, please cite our preprint on Arxiv:
32
+
33
+ ```
34
+ @misc{goldzycher2024improving,
35
+ title={Improving Adversarial Data Collection by Supporting Annotators: Lessons from GAHD, a German Hate Speech Dataset},
36
+ author={Janis Goldzycher and Paul Röttger and Gerold Schneider},
37
+ year={2024},
38
+ eprint={2403.19559},
39
+ archivePrefix={arXiv},
40
+ primaryClass={cs.CL}
41
+ }
42
+ ```