File size: 2,388 Bytes
9113858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47cc262
9113858
 
 
 
 
 
 
 
 
47cc262
 
9113858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: WinKawaks/vit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-tiny-patch16-224-winkawaks
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.842911877394636
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vit-tiny-patch16-224-winkawaks

This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3542
- Accuracy: 0.8429

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5345        | 1.0   | 202  | 0.4689          | 0.7771   |
| 0.4936        | 2.0   | 404  | 0.5022          | 0.7485   |
| 0.4911        | 3.0   | 606  | 0.3887          | 0.8279   |
| 0.4191        | 4.0   | 808  | 0.4121          | 0.8098   |
| 0.4408        | 5.0   | 1010 | 0.3897          | 0.8255   |
| 0.4134        | 6.0   | 1212 | 0.3714          | 0.8332   |
| 0.4117        | 7.0   | 1414 | 0.3685          | 0.8377   |
| 0.3991        | 8.0   | 1616 | 0.3602          | 0.8412   |
| 0.3936        | 9.0   | 1818 | 0.3542          | 0.8429   |
| 0.3422        | 10.0  | 2020 | 0.3540          | 0.8398   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2