File size: 7,825 Bytes
9f77b1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import requests
import zipfile
import subprocess
import shutil
from huggingface_hub import snapshot_download

def clone_or_update_llama_cpp():
    print("Preparing...")
    base_dir = os.path.dirname(os.path.abspath(__file__))
    os.chdir(base_dir)
    if not os.path.exists("llama.cpp"):
        subprocess.run(["git", "clone", "--depth", "1", "https://github.com/ggerganov/llama.cpp"])
    else:
        os.chdir("llama.cpp")
        subprocess.run(["git", "pull"])
    os.chdir(base_dir)
    print("The 'llama.cpp' repository is ready.")

def download_llama_release():
    base_dir = os.path.dirname(os.path.abspath(__file__))
    dl_dir = os.path.join(base_dir, "bin", "dl")
    if not os.path.exists(dl_dir):
        os.makedirs(dl_dir)

    os.chdir(dl_dir)
    latest_release_url = "https://github.com/ggerganov/llama.cpp/releases/latest"
    response = requests.get(latest_release_url)
    if response.status_code == 200:
        latest_release_tag = response.url.split("/")[-1]
        download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip"
        response = requests.get(download_url)
        if response.status_code == 200:
            with open(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "wb") as f:
                f.write(response.content)
            with zipfile.ZipFile(f"llama-{latest_release_tag}-bin-win-cuda-cu12.2.0-x64.zip", "r") as zip_ref:
                zip_ref.extractall(os.path.join(base_dir, "bin"))
            print("Downloading latest 'llama.cpp' prebuilt Windows binaries...")
            print("Download and extraction completed successfully.")
            return latest_release_tag
        else:
            print("Failed to download the release file.")
    else:
        print("Failed to fetch the latest release information.")

def download_cudart_if_necessary(latest_release_tag):
    base_dir = os.path.dirname(os.path.abspath(__file__))
    cudart_dl_dir = os.path.join(base_dir, "bin", "dl")
    if not os.path.exists(cudart_dl_dir):
        os.makedirs(cudart_dl_dir)

    cudart_zip_file = os.path.join(cudart_dl_dir, "cudart-llama-bin-win-cu12.2.0-x64.zip")
    cudart_extracted_files = ["cublas64_12.dll", "cublasLt64_12.dll", "cudart64_12.dll"]

    if all(os.path.exists(os.path.join(base_dir, "bin", file)) for file in cudart_extracted_files):
        print("Cuda resources already exist. Skipping download.")
    else:
        cudart_download_url = f"https://github.com/ggerganov/llama.cpp/releases/download/{latest_release_tag}/cudart-llama-bin-win-cu12.2.0-x64.zip"
        response = requests.get(cudart_download_url)
        if response.status_code == 200:
            with open(cudart_zip_file, "wb") as f:
                f.write(response.content)
            with zipfile.ZipFile(cudart_zip_file, "r") as zip_ref:
                zip_ref.extractall(os.path.join(base_dir, "bin"))
            print("Preparing 'cuda' resources...")
            print("Download and extraction of cudart completed successfully.")
        else:
            print("Failed to download the cudart release file.")

def download_model_repo():
    base_dir = os.path.dirname(os.path.abspath(__file__))
    models_dir = os.path.join(base_dir, "models")

    if not os.path.exists(models_dir):
        os.makedirs(models_dir)

    model_id = input("Enter the model ID to download (e.g., huggingface/transformers): ")
    model_name = model_id.split("/")[-1]
    model_dir = os.path.join(models_dir, model_name)

    gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF")
    gguf_model_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf")
    imatrix_file_name = input("Enter the name of the imatrix.txt file (default: imatrix.txt): ").strip() or "imatrix.txt"
    delete_model_dir = input("Remove HF model folder after converting original model to GGUF? (yes/no) (default: no): ").strip().lower()

    if os.path.exists(gguf_model_path):
        create_imatrix(base_dir, gguf_dir, gguf_model_path, model_name, imatrix_file_name)
    else: 
        if os.path.exists(model_dir):
            print("Model repository already exists. Using existing repository.")  

            convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir, imatrix_file_name)

        else:
            revision = input("Enter the revision (branch, tag, or commit) to download (default: main): ") or "main"

            print("Downloading model repository...")
            snapshot_download(repo_id=model_id, local_dir=model_dir, revision=revision)
            print("Model repository downloaded successfully.")

            convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir, imatrix_file_name)

def convert_model_to_gguf_f16(base_dir, model_dir, model_name, delete_model_dir, imatrix_file_name):
    convert_script = os.path.join(base_dir, "llama.cpp", "convert.py")
    gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF")
    gguf_model_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf")

    if not os.path.exists(gguf_dir):
        os.makedirs(gguf_dir)

    if not os.path.exists(gguf_model_path):
        #subprocess.run(["python", convert_script, model_dir, "--outfile", gguf_model_path, "--outtype", "f16"])
        subprocess.run(["python", convert_script, model_dir, "--outfile", gguf_model_path, "--outtype", "f16", "--pad-vocab"])

        if delete_model_dir == 'yes' or delete_model_dir == 'y':
            shutil.rmtree(model_dir)
            print(f"Original model directory '{model_dir}' deleted.")
        else:
            print(f"Original model directory '{model_dir}' was not deleted. You can remove it manually.")
        
    
    create_imatrix(base_dir, gguf_dir, gguf_model_path, model_name, imatrix_file_name)

def create_imatrix(base_dir, gguf_dir, gguf_model_path, model_name, imatrix_file_name):
    imatrix_exe = os.path.join(base_dir, "bin", "imatrix.exe")
    imatrix_output_src = os.path.join(gguf_dir, "imatrix.dat")
    imatrix_output_dst = os.path.join(gguf_dir, "imatrix.dat")
    if not os.path.exists(imatrix_output_dst):
        try:
            subprocess.run([imatrix_exe, "-m", gguf_model_path, "-f", os.path.join(base_dir, "imatrix", imatrix_file_name), "-ngl", "7"], cwd=gguf_dir)
            shutil.move(imatrix_output_src, imatrix_output_dst)
            print("imatrix.dat moved successfully.")
        except Exception as e:
            print("Error occurred while moving imatrix.dat:", e)
    else:
        print("imatrix.dat already exists in the GGUF folder.")

    quantize_models(base_dir, model_name)

def quantize_models(base_dir, model_name):
    gguf_dir = os.path.join(base_dir, "models", f"{model_name}-GGUF")
    f16_gguf_path = os.path.join(gguf_dir, f"{model_name}-F16.gguf")

    quantization_options = [
        "IQ3_M", "IQ3_XXS",
        "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS",
        "Q5_K_M", "Q5_K_S",
        "Q6_K",
        "Q8_0"
    ]

    for quant_option in quantization_options:
        quantized_gguf_name = f"{model_name}-{quant_option}-imat.gguf"
        quantized_gguf_path = os.path.join(gguf_dir, quantized_gguf_name)
        quantize_command = os.path.join(base_dir, "bin", "quantize.exe")
        imatrix_path = os.path.join(gguf_dir, "imatrix.dat")

        subprocess.run([quantize_command, "--imatrix", imatrix_path, 
                        f16_gguf_path, quantized_gguf_path, quant_option], cwd=gguf_dir)
        print(f"Model quantized with {quant_option} option.")

def main():
    clone_or_update_llama_cpp()
    latest_release_tag = download_llama_release()
    download_cudart_if_necessary(latest_release_tag)
    download_model_repo()
    print("Finished preparing resources.")

if __name__ == "__main__":
    main()