Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1919.78 +/- 335.18
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb39379db056438bb0e9040b7b5cdb7009f9388d4b1f4416668b12359dd1b295
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe5636fa310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe5636fa3a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe5636fa430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe5636fa4c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe5636fa550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe5636fa5e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe5636fa670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe5636fa700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe5636fa790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe5636fa820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe5636fa8b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe5636fa940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe5636f9270>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1677154057032405342,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB8yoD2n/Dc+hTEPP/DfiD84ORE9cT2JPZ/sir7wJSy+E8G1vWupVr+VG4K/+fkUwByczr7mYHg/JIZbPuowcT+BIrS7TFPdP+GEnD2V/AvAp2Atvzs+cD68TOs+vhUfP4j9lb8VfvE+GVbkv0yuYD9k4vk9e71DPhDJDj+k3ac/o5chPkA9s728Fa2+5J1Svu8qEb6r58K/qcnXvg+t4r/q8Fu+r+VvPz8ekj4T3o4/oynCvh/0nj9EEUO8XFTgv7TAM7/vwEk9jXkMP+Az8D6I/ZW/FX7xPvOBDz+p15G/ck6VPgBEKz/U2M4+hD3VPx+1mj83tmy/F+WCvwqQkL51/eY+lUMOvr8T1r6T5PM/gWf/PvDUs75nG0Y/fzL5vpnSZT+lJI6/cEWDvxeEBz+p3A6/zxLBPQ1ieD9vsLS/iP2VvxV+8T7zgQ8/qdeRvxEQn7+oxJE/rSV6PTpuhL5ecKg+cmUhv7odYj7Y+Xs9uASSv4ASXj9Tqg+/CyGTP54OVz8+SrS/lqFJPzghCr/aI0M/5CmFv1+OKz/P0SK+TGPkPh6+aL8ngi+/gTWzv4j9lb8VfvE+GVbkv6nXkb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACp33O2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcImbPQAAAAAS5/+/AAAAAOniq70AAAAAAUP+PwAAAAB/PPi8AAAAAH7U5j8AAAAAJsbkvAAAAAAcLfm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJVj9NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL1s2j0AAAAAj2/gvwAAAABiv129AAAAAMf+5D8AAAAAX6bpPQAAAAD3+t0/AAAAAClnCr4AAAAAuzX9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqSmLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3h4w9AAAAALeN9L8AAAAA8tz+vQAAAAAbqfI/AAAAAIVr9bwAAAAAzxz1PwAAAACDHaq8AAAAAD667L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACY8hC3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf5GkPAAAAAAdafe/AAAAAJD6Cb4AAAAAn/nZPwAAAAAUSKC9AAAAADQd9z8AAAAATvMMPgAAAAD7k+C/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ7zoOd5IH2MAWyUTegDjAF0lEdAqrOvWUbDM3V9lChoBkdAnPN+C5EtumgHTegDaAhHQKq0V4oJAt51fZQoaAZHQJ9O0hW5paloB03oA2gIR0CqtNwrMC9zdX2UKGgGR0ChWoFDneSCaAdN6ANoCEdAqrZ5ZbILgHV9lChoBkdAoNKXaBZpz2gHTegDaAhHQKq/9y+6Ae91fZQoaAZHQJpITQokRjBoB03oA2gIR0CqwKu3UhFFdX2UKGgGR0Cb5yK02LpBaAdN6ANoCEdAqsEnw9aEBnV9lChoBkdAlozESuhbn2gHTegDaAhHQKrCy67ulXR1fZQoaAZHQJWz+ZQYUFloB03oA2gIR0Cqzu8K5TZQdX2UKGgGR0CgwZ6f8MuwaAdN6ANoCEdAqs//geii7HV9lChoBkdAk/Y9wzch1WgHTegDaAhHQKrQyiLVFx51fZQoaAZHQJa50wM6RyRoB03oA2gIR0Cq0q7FsHjZdX2UKGgGR0Cc37cDKYAsaAdN6ANoCEdAqtxD2pQ1rXV9lChoBkdAnnAN0A93bGgHTegDaAhHQKrc7lxwQ191fZQoaAZHQJF9k7Rv3rVoB03oA2gIR0Cq3W9APd2xdX2UKGgGR0CeUSVARkEtaAdN6ANoCEdAqt8oT0xubnV9lChoBkdAkfWEaZQYUGgHTegDaAhHQKrqfvaURnR1fZQoaAZHQHehSbhFVktoB03oA2gIR0Cq640b1h9cdX2UKGgGR0CSX4N+9allaAdN6ANoCEdAquxLThHby3V9lChoBkdAlJO4ZMtbtGgHTegDaAhHQKruzFSbYsd1fZQoaAZHQJQomff4yoJoB03oA2gIR0Cq+LiS7oStdX2UKGgGR0CRzvIOYplSaAdN6ANoCEdAqvlkSmIj4nV9lChoBkdAlBdvszEaVGgHTegDaAhHQKr53s/pt791fZQoaAZHQJI8U/qxC6ZoB03oA2gIR0Cq+44aHbh4dX2UKGgGR0CImofLcKw7aAdN6ANoCEdAqwXho4+8oXV9lChoBkdAmBfZMURFqmgHTegDaAhHQKsG29VWCEp1fZQoaAZHQINv2kcjqwBoB03oA2gIR0CrB5LIHTqjdX2UKGgGR0CAkTUAksz3aAdN6ANoCEdAqwolgBtDUnV9lChoBkdAkZg4p2ECeWgHTegDaAhHQKsVKD0UXYV1fZQoaAZHQJ33Z1s+FDhoB03oA2gIR0CrFdqnWJ7+dX2UKGgGR0CaFXqH446waAdN6ANoCEdAqxZbcXWOInV9lChoBkdAkktG6XjU/mgHTegDaAhHQKsYBu76Hj91fZQoaAZHQJYMyKFZgXxoB03oA2gIR0CrIaxoAXEZdX2UKGgGR0CdlPlaKUFCaAdN6ANoCEdAqyJuo99tuXV9lChoBkdAnUddat9x62gHTegDaAhHQKsjI/eLvTh1fZQoaAZHQJqTeVMVUMpoB03oA2gIR0CrJXJuuRs/dX2UKGgGR0CfEJs4DLbIaAdN6ANoCEdAqzEweFL39XV9lChoBkdAnMjCx7iQ1mgHTegDaAhHQKsx2LpA2Q51fZQoaAZHQJ3E3XvphWpoB03oA2gIR0CrMllXaJyidX2UKGgGR0CY8207r9l3aAdN6ANoCEdAqzP49q1w53V9lChoBkdAlETzLKV6eGgHTegDaAhHQKs9pLq2SdR1fZQoaAZHQIaBZrLyMDRoB03oA2gIR0CrPlV4Pf8/dX2UKGgGR0CdWG5Jsfq5aAdN6ANoCEdAqz7Pn4fwJHV9lChoBkdAnPSns9jgAWgHTegDaAhHQKtAdY1YQrd1fZQoaAZHQHyyOv6j325oB03oA2gIR0CrTbdIf8uSdX2UKGgGR0CTmbYkVvdeaAdN6ANoCEdAq05lIK+i8HV9lChoBkdAk++ttVJcxGgHTegDaAhHQKtO4zNUwSJ1fZQoaAZHQJWJxEWqLjxoB03oA2gIR0CrUJbUXpGGdX2UKGgGR0CUFHJxvNu+aAdN6ANoCEdAq1puLLpzLnV9lChoBkdAhd0HjyWiUWgHTegDaAhHQKtbLOIqLCN1fZQoaAZHQIBxk5MlC1JoB03oA2gIR0CrW6ymhufmdX2UKGgGR0CKEo9vjwQUaAdN6ANoCEdAq11Q9Pk7wXV9lChoBkdAiaZ9qcmShmgHTegDaAhHQKtqZlxwQ191fZQoaAZHQImWQGSpzcRoB03oA2gIR0CraxYAjps5dX2UKGgGR0B3JkE0SAYpaAdN6ANoCEdAq2uYWvbGm3V9lChoBkdAg13GfwqiGmgHTegDaAhHQKttTgLJCBx1fZQoaAZHQIMI9kpZwGZoB03oA2gIR0CrdvAWSEDhdX2UKGgGR0B/pAY+B6KMaAdN6ANoCEdAq3eg9gWrO3V9lChoBkdAh0pzYVZcLWgHTegDaAhHQKt4J9DQZ4x1fZQoaAZHQJDj2Z3LV4JoB03oA2gIR0CredNXYDkmdX2UKGgGR0CJs+bkOqecaAdN6ANoCEdAq4ZguEmICXV9lChoBkdAh7LV5rxiG2gHTegDaAhHQKuHfPcBU711fZQoaAZHQIUT+hoM8YBoB03oA2gIR0CriEJpN9H+dX2UKGgGR0CU7fvX9R77aAdN6ANoCEdAq4n1BBzFM3V9lChoBkdAmQBhp5/smmgHTegDaAhHQKuTzCKrJbN1fZQoaAZHQJtmQJY1YQtoB03oA2gIR0CrlHrs0HhTdX2UKGgGR0CLZy0MPSUkaAdN6ANoCEdAq5T6/qPfbnV9lChoBkdAhwwuAAhjfGgHTegDaAhHQKuWrC9h7Vt1fZQoaAZHQJEz4dn003xoB03oA2gIR0CrohevyLAIdX2UKGgGR0CZIZENvwVkaAdN6ANoCEdAq6Mh2ll9SnV9lChoBkdAnR2XrIHTqmgHTegDaAhHQKuj5Ew35vd1fZQoaAZHQIjSsuWa+exoB03oA2gIR0Crpm0/fO2RdX2UKGgGR0CXVEJA+pwTaAdN6ANoCEdAq6/0VeruIHV9lChoBkdAmD3MZtNzsGgHTegDaAhHQKuwoU8FINF1fZQoaAZHQJQJY9W6shhoB03oA2gIR0CrsSmLDQ7cdX2UKGgGR0CV96AyVObiaAdN6ANoCEdAq7LI6EJ0GXV9lChoBkdAloEjrqt5lmgHTegDaAhHQKu88G2TgVJ1fZQoaAZHQJ0XPQzDXOJoB03oA2gIR0Crveq3uuzQdX2UKGgGR0CZ12GahHskaAdN6ANoCEdAq76mj7ALzHV9lChoBkdAoF0NYZEUkGgHTegDaAhHQKvBMQz1sch1fZQoaAZHQJTuMHhS9/VoB03oA2gIR0CrzCx0U47zdX2UKGgGR0CftjQDV6NVaAdN6ANoCEdAq8zZFocrAnV9lChoBkdAmsvsDbJwKmgHTegDaAhHQKvNVkDIRyx1fZQoaAZHQJ7ZZSFXaJ1oB03oA2gIR0CrzvuwgTysdX2UKGgGR0CCuCaVD8cdaAdN6ANoCEdAq9igQ4CIUXV9lChoBkdAmYWvUjLSu2gHTegDaAhHQKvZbSb6P811fZQoaAZHQKB6H2/zreJoB03oA2gIR0Cr2iaxoqTbdX2UKGgGR0CfGnlhw2l3aAdN6ANoCEdAq9yE3Ov+wXV9lChoBkdAoEWB6F/QSmgHTegDaAhHQKvokXaakRB1fZQoaAZHQKBA/gzguRNoB03oA2gIR0Cr6T4/u9eydX2UKGgGR0Cat5vl2eQNaAdN6ANoCEdAq+m6Y3Ns33V9lChoBkdAm8yAVj7Q9mgHTegDaAhHQKvrawJw84h1fZQoaAZHQJAJCkj5bhZoB03oA2gIR0Cr9RmKQ7tBdX2UKGgGR0Cd9rvsJIDpaAdN6ANoCEdAq/XNG0/nn3V9lChoBkdAnMqxdQfp2WgHTegDaAhHQKv2Q/47A+J1fZQoaAZHQJv0dV4oqkNoB03oA2gIR0Cr9/a8pTdddX2UKGgGR0CcBo+wTufFaAdN6ANoCEdArAUHs5XEInV9lChoBkdAiYUoFNcnmmgHTegDaAhHQKwFvm/WUbF1fZQoaAZHQImpvHaN+9doB03oA2gIR0CsBkOv2Xb/dX2UKGgGR0CdaV0Re1KHaAdN6ANoCEdArAfnkLhJiHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52854834ba465029be10ae88db12ff4020e779201e438f3939ac3b17ce113e58
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e57f55499d2190cd510564867f5bbcaccefdcb61889dda08477003257efbf28
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe5636fa310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe5636fa3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe5636fa430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe5636fa4c0>", "_build": "<function ActorCriticPolicy._build at 0x7fe5636fa550>", "forward": "<function ActorCriticPolicy.forward at 0x7fe5636fa5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe5636fa670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe5636fa700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe5636fa790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe5636fa820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe5636fa8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe5636fa940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe5636f9270>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677154057032405342, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB8yoD2n/Dc+hTEPP/DfiD84ORE9cT2JPZ/sir7wJSy+E8G1vWupVr+VG4K/+fkUwByczr7mYHg/JIZbPuowcT+BIrS7TFPdP+GEnD2V/AvAp2Atvzs+cD68TOs+vhUfP4j9lb8VfvE+GVbkv0yuYD9k4vk9e71DPhDJDj+k3ac/o5chPkA9s728Fa2+5J1Svu8qEb6r58K/qcnXvg+t4r/q8Fu+r+VvPz8ekj4T3o4/oynCvh/0nj9EEUO8XFTgv7TAM7/vwEk9jXkMP+Az8D6I/ZW/FX7xPvOBDz+p15G/ck6VPgBEKz/U2M4+hD3VPx+1mj83tmy/F+WCvwqQkL51/eY+lUMOvr8T1r6T5PM/gWf/PvDUs75nG0Y/fzL5vpnSZT+lJI6/cEWDvxeEBz+p3A6/zxLBPQ1ieD9vsLS/iP2VvxV+8T7zgQ8/qdeRvxEQn7+oxJE/rSV6PTpuhL5ecKg+cmUhv7odYj7Y+Xs9uASSv4ASXj9Tqg+/CyGTP54OVz8+SrS/lqFJPzghCr/aI0M/5CmFv1+OKz/P0SK+TGPkPh6+aL8ngi+/gTWzv4j9lb8VfvE+GVbkv6nXkb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACp33O2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcImbPQAAAAAS5/+/AAAAAOniq70AAAAAAUP+PwAAAAB/PPi8AAAAAH7U5j8AAAAAJsbkvAAAAAAcLfm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJVj9NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL1s2j0AAAAAj2/gvwAAAABiv129AAAAAMf+5D8AAAAAX6bpPQAAAAD3+t0/AAAAAClnCr4AAAAAuzX9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqSmLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3h4w9AAAAALeN9L8AAAAA8tz+vQAAAAAbqfI/AAAAAIVr9bwAAAAAzxz1PwAAAACDHaq8AAAAAD667L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACY8hC3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAf5GkPAAAAAAdafe/AAAAAJD6Cb4AAAAAn/nZPwAAAAAUSKC9AAAAADQd9z8AAAAATvMMPgAAAAD7k+C/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ7zoOd5IH2MAWyUTegDjAF0lEdAqrOvWUbDM3V9lChoBkdAnPN+C5EtumgHTegDaAhHQKq0V4oJAt51fZQoaAZHQJ9O0hW5paloB03oA2gIR0CqtNwrMC9zdX2UKGgGR0ChWoFDneSCaAdN6ANoCEdAqrZ5ZbILgHV9lChoBkdAoNKXaBZpz2gHTegDaAhHQKq/9y+6Ae91fZQoaAZHQJpITQokRjBoB03oA2gIR0CqwKu3UhFFdX2UKGgGR0Cb5yK02LpBaAdN6ANoCEdAqsEnw9aEBnV9lChoBkdAlozESuhbn2gHTegDaAhHQKrCy67ulXR1fZQoaAZHQJWz+ZQYUFloB03oA2gIR0Cqzu8K5TZQdX2UKGgGR0CgwZ6f8MuwaAdN6ANoCEdAqs//geii7HV9lChoBkdAk/Y9wzch1WgHTegDaAhHQKrQyiLVFx51fZQoaAZHQJa50wM6RyRoB03oA2gIR0Cq0q7FsHjZdX2UKGgGR0Cc37cDKYAsaAdN6ANoCEdAqtxD2pQ1rXV9lChoBkdAnnAN0A93bGgHTegDaAhHQKrc7lxwQ191fZQoaAZHQJF9k7Rv3rVoB03oA2gIR0Cq3W9APd2xdX2UKGgGR0CeUSVARkEtaAdN6ANoCEdAqt8oT0xubnV9lChoBkdAkfWEaZQYUGgHTegDaAhHQKrqfvaURnR1fZQoaAZHQHehSbhFVktoB03oA2gIR0Cq640b1h9cdX2UKGgGR0CSX4N+9allaAdN6ANoCEdAquxLThHby3V9lChoBkdAlJO4ZMtbtGgHTegDaAhHQKruzFSbYsd1fZQoaAZHQJQomff4yoJoB03oA2gIR0Cq+LiS7oStdX2UKGgGR0CRzvIOYplSaAdN6ANoCEdAqvlkSmIj4nV9lChoBkdAlBdvszEaVGgHTegDaAhHQKr53s/pt791fZQoaAZHQJI8U/qxC6ZoB03oA2gIR0Cq+44aHbh4dX2UKGgGR0CImofLcKw7aAdN6ANoCEdAqwXho4+8oXV9lChoBkdAmBfZMURFqmgHTegDaAhHQKsG29VWCEp1fZQoaAZHQINv2kcjqwBoB03oA2gIR0CrB5LIHTqjdX2UKGgGR0CAkTUAksz3aAdN6ANoCEdAqwolgBtDUnV9lChoBkdAkZg4p2ECeWgHTegDaAhHQKsVKD0UXYV1fZQoaAZHQJ33Z1s+FDhoB03oA2gIR0CrFdqnWJ7+dX2UKGgGR0CaFXqH446waAdN6ANoCEdAqxZbcXWOInV9lChoBkdAkktG6XjU/mgHTegDaAhHQKsYBu76Hj91fZQoaAZHQJYMyKFZgXxoB03oA2gIR0CrIaxoAXEZdX2UKGgGR0CdlPlaKUFCaAdN6ANoCEdAqyJuo99tuXV9lChoBkdAnUddat9x62gHTegDaAhHQKsjI/eLvTh1fZQoaAZHQJqTeVMVUMpoB03oA2gIR0CrJXJuuRs/dX2UKGgGR0CfEJs4DLbIaAdN6ANoCEdAqzEweFL39XV9lChoBkdAnMjCx7iQ1mgHTegDaAhHQKsx2LpA2Q51fZQoaAZHQJ3E3XvphWpoB03oA2gIR0CrMllXaJyidX2UKGgGR0CY8207r9l3aAdN6ANoCEdAqzP49q1w53V9lChoBkdAlETzLKV6eGgHTegDaAhHQKs9pLq2SdR1fZQoaAZHQIaBZrLyMDRoB03oA2gIR0CrPlV4Pf8/dX2UKGgGR0CdWG5Jsfq5aAdN6ANoCEdAqz7Pn4fwJHV9lChoBkdAnPSns9jgAWgHTegDaAhHQKtAdY1YQrd1fZQoaAZHQHyyOv6j325oB03oA2gIR0CrTbdIf8uSdX2UKGgGR0CTmbYkVvdeaAdN6ANoCEdAq05lIK+i8HV9lChoBkdAk++ttVJcxGgHTegDaAhHQKtO4zNUwSJ1fZQoaAZHQJWJxEWqLjxoB03oA2gIR0CrUJbUXpGGdX2UKGgGR0CUFHJxvNu+aAdN6ANoCEdAq1puLLpzLnV9lChoBkdAhd0HjyWiUWgHTegDaAhHQKtbLOIqLCN1fZQoaAZHQIBxk5MlC1JoB03oA2gIR0CrW6ymhufmdX2UKGgGR0CKEo9vjwQUaAdN6ANoCEdAq11Q9Pk7wXV9lChoBkdAiaZ9qcmShmgHTegDaAhHQKtqZlxwQ191fZQoaAZHQImWQGSpzcRoB03oA2gIR0CraxYAjps5dX2UKGgGR0B3JkE0SAYpaAdN6ANoCEdAq2uYWvbGm3V9lChoBkdAg13GfwqiGmgHTegDaAhHQKttTgLJCBx1fZQoaAZHQIMI9kpZwGZoB03oA2gIR0CrdvAWSEDhdX2UKGgGR0B/pAY+B6KMaAdN6ANoCEdAq3eg9gWrO3V9lChoBkdAh0pzYVZcLWgHTegDaAhHQKt4J9DQZ4x1fZQoaAZHQJDj2Z3LV4JoB03oA2gIR0CredNXYDkmdX2UKGgGR0CJs+bkOqecaAdN6ANoCEdAq4ZguEmICXV9lChoBkdAh7LV5rxiG2gHTegDaAhHQKuHfPcBU711fZQoaAZHQIUT+hoM8YBoB03oA2gIR0CriEJpN9H+dX2UKGgGR0CU7fvX9R77aAdN6ANoCEdAq4n1BBzFM3V9lChoBkdAmQBhp5/smmgHTegDaAhHQKuTzCKrJbN1fZQoaAZHQJtmQJY1YQtoB03oA2gIR0CrlHrs0HhTdX2UKGgGR0CLZy0MPSUkaAdN6ANoCEdAq5T6/qPfbnV9lChoBkdAhwwuAAhjfGgHTegDaAhHQKuWrC9h7Vt1fZQoaAZHQJEz4dn003xoB03oA2gIR0CrohevyLAIdX2UKGgGR0CZIZENvwVkaAdN6ANoCEdAq6Mh2ll9SnV9lChoBkdAnR2XrIHTqmgHTegDaAhHQKuj5Ew35vd1fZQoaAZHQIjSsuWa+exoB03oA2gIR0Crpm0/fO2RdX2UKGgGR0CXVEJA+pwTaAdN6ANoCEdAq6/0VeruIHV9lChoBkdAmD3MZtNzsGgHTegDaAhHQKuwoU8FINF1fZQoaAZHQJQJY9W6shhoB03oA2gIR0CrsSmLDQ7cdX2UKGgGR0CV96AyVObiaAdN6ANoCEdAq7LI6EJ0GXV9lChoBkdAloEjrqt5lmgHTegDaAhHQKu88G2TgVJ1fZQoaAZHQJ0XPQzDXOJoB03oA2gIR0Crveq3uuzQdX2UKGgGR0CZ12GahHskaAdN6ANoCEdAq76mj7ALzHV9lChoBkdAoF0NYZEUkGgHTegDaAhHQKvBMQz1sch1fZQoaAZHQJTuMHhS9/VoB03oA2gIR0CrzCx0U47zdX2UKGgGR0CftjQDV6NVaAdN6ANoCEdAq8zZFocrAnV9lChoBkdAmsvsDbJwKmgHTegDaAhHQKvNVkDIRyx1fZQoaAZHQJ7ZZSFXaJ1oB03oA2gIR0CrzvuwgTysdX2UKGgGR0CCuCaVD8cdaAdN6ANoCEdAq9igQ4CIUXV9lChoBkdAmYWvUjLSu2gHTegDaAhHQKvZbSb6P811fZQoaAZHQKB6H2/zreJoB03oA2gIR0Cr2iaxoqTbdX2UKGgGR0CfGnlhw2l3aAdN6ANoCEdAq9yE3Ov+wXV9lChoBkdAoEWB6F/QSmgHTegDaAhHQKvokXaakRB1fZQoaAZHQKBA/gzguRNoB03oA2gIR0Cr6T4/u9eydX2UKGgGR0Cat5vl2eQNaAdN6ANoCEdAq+m6Y3Ns33V9lChoBkdAm8yAVj7Q9mgHTegDaAhHQKvrawJw84h1fZQoaAZHQJAJCkj5bhZoB03oA2gIR0Cr9RmKQ7tBdX2UKGgGR0Cd9rvsJIDpaAdN6ANoCEdAq/XNG0/nn3V9lChoBkdAnMqxdQfp2WgHTegDaAhHQKv2Q/47A+J1fZQoaAZHQJv0dV4oqkNoB03oA2gIR0Cr9/a8pTdddX2UKGgGR0CcBo+wTufFaAdN6ANoCEdArAUHs5XEInV9lChoBkdAiYUoFNcnmmgHTegDaAhHQKwFvm/WUbF1fZQoaAZHQImpvHaN+9doB03oA2gIR0CsBkOv2Xb/dX2UKGgGR0CdaV0Re1KHaAdN6ANoCEdArAfnkLhJiHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93ba26d5924d771d31cf89e39ea7371b1605d6ed42a2e54297bc619c425abada
|
3 |
+
size 1094522
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1919.7812660921365, "std_reward": 335.18307512993647, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-23T13:17:26.426975"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:701ce9cfc6506c966bc252d731e1456b3175d3296080809ede5e6017bb05bf32
|
3 |
+
size 2136
|