mikato's picture
Upload . with huggingface_hub
ee76408
raw
history blame
107 kB
[2023-02-26 11:56:49,884][00595] Saving configuration to /content/train_dir/default_experiment/config.json...
[2023-02-26 11:56:49,886][00595] Rollout worker 0 uses device cpu
[2023-02-26 11:56:49,888][00595] Rollout worker 1 uses device cpu
[2023-02-26 11:56:49,893][00595] Rollout worker 2 uses device cpu
[2023-02-26 11:56:49,894][00595] Rollout worker 3 uses device cpu
[2023-02-26 11:56:49,903][00595] Rollout worker 4 uses device cpu
[2023-02-26 11:56:49,904][00595] Rollout worker 5 uses device cpu
[2023-02-26 11:56:49,905][00595] Rollout worker 6 uses device cpu
[2023-02-26 11:56:49,911][00595] Rollout worker 7 uses device cpu
[2023-02-26 11:56:50,344][00595] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 11:56:50,353][00595] InferenceWorker_p0-w0: min num requests: 2
[2023-02-26 11:56:50,467][00595] Starting all processes...
[2023-02-26 11:56:50,478][00595] Starting process learner_proc0
[2023-02-26 11:56:50,655][00595] Starting all processes...
[2023-02-26 11:56:50,716][00595] Starting process inference_proc0-0
[2023-02-26 11:56:50,718][00595] Starting process rollout_proc0
[2023-02-26 11:56:50,718][00595] Starting process rollout_proc1
[2023-02-26 11:56:50,721][00595] Starting process rollout_proc2
[2023-02-26 11:56:50,721][00595] Starting process rollout_proc3
[2023-02-26 11:56:50,721][00595] Starting process rollout_proc4
[2023-02-26 11:56:50,756][00595] Starting process rollout_proc5
[2023-02-26 11:56:50,756][00595] Starting process rollout_proc6
[2023-02-26 11:56:50,757][00595] Starting process rollout_proc7
[2023-02-26 11:57:01,854][10641] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 11:57:01,863][10641] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2023-02-26 11:57:01,891][10658] Worker 2 uses CPU cores [0]
[2023-02-26 11:57:01,983][10664] Worker 6 uses CPU cores [0]
[2023-02-26 11:57:02,035][10654] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 11:57:02,035][10654] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2023-02-26 11:57:02,211][10659] Worker 3 uses CPU cores [1]
[2023-02-26 11:57:02,303][10657] Worker 1 uses CPU cores [1]
[2023-02-26 11:57:02,409][10660] Worker 4 uses CPU cores [0]
[2023-02-26 11:57:02,606][10661] Worker 5 uses CPU cores [1]
[2023-02-26 11:57:02,622][10667] Worker 7 uses CPU cores [1]
[2023-02-26 11:57:02,823][10656] Worker 0 uses CPU cores [0]
[2023-02-26 11:57:02,926][10654] Num visible devices: 1
[2023-02-26 11:57:02,930][10641] Num visible devices: 1
[2023-02-26 11:57:02,945][10641] Starting seed is not provided
[2023-02-26 11:57:02,945][10641] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 11:57:02,946][10641] Initializing actor-critic model on device cuda:0
[2023-02-26 11:57:02,947][10641] RunningMeanStd input shape: (3, 72, 128)
[2023-02-26 11:57:02,949][10641] RunningMeanStd input shape: (1,)
[2023-02-26 11:57:02,968][10641] ConvEncoder: input_channels=3
[2023-02-26 11:57:03,431][10641] Conv encoder output size: 512
[2023-02-26 11:57:03,432][10641] Policy head output size: 512
[2023-02-26 11:57:03,509][10641] Created Actor Critic model with architecture:
[2023-02-26 11:57:03,510][10641] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2023-02-26 11:57:10,326][00595] Heartbeat connected on Batcher_0
[2023-02-26 11:57:10,345][00595] Heartbeat connected on InferenceWorker_p0-w0
[2023-02-26 11:57:10,372][00595] Heartbeat connected on RolloutWorker_w0
[2023-02-26 11:57:10,376][00595] Heartbeat connected on RolloutWorker_w1
[2023-02-26 11:57:10,387][00595] Heartbeat connected on RolloutWorker_w2
[2023-02-26 11:57:10,419][00595] Heartbeat connected on RolloutWorker_w3
[2023-02-26 11:57:10,430][00595] Heartbeat connected on RolloutWorker_w4
[2023-02-26 11:57:10,446][00595] Heartbeat connected on RolloutWorker_w5
[2023-02-26 11:57:10,454][00595] Heartbeat connected on RolloutWorker_w6
[2023-02-26 11:57:10,465][00595] Heartbeat connected on RolloutWorker_w7
[2023-02-26 11:57:12,900][10641] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-02-26 11:57:12,901][10641] No checkpoints found
[2023-02-26 11:57:12,901][10641] Did not load from checkpoint, starting from scratch!
[2023-02-26 11:57:12,902][10641] Initialized policy 0 weights for model version 0
[2023-02-26 11:57:12,905][10641] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 11:57:12,911][10641] LearnerWorker_p0 finished initialization!
[2023-02-26 11:57:12,912][00595] Heartbeat connected on LearnerWorker_p0
[2023-02-26 11:57:13,105][10654] RunningMeanStd input shape: (3, 72, 128)
[2023-02-26 11:57:13,106][10654] RunningMeanStd input shape: (1,)
[2023-02-26 11:57:13,124][10654] ConvEncoder: input_channels=3
[2023-02-26 11:57:13,221][10654] Conv encoder output size: 512
[2023-02-26 11:57:13,222][10654] Policy head output size: 512
[2023-02-26 11:57:14,833][00595] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-02-26 11:57:15,474][00595] Inference worker 0-0 is ready!
[2023-02-26 11:57:15,476][00595] All inference workers are ready! Signal rollout workers to start!
[2023-02-26 11:57:15,603][10656] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 11:57:15,620][10658] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 11:57:15,629][10664] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 11:57:15,630][10660] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 11:57:15,640][10659] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 11:57:15,642][10657] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 11:57:15,643][10661] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 11:57:15,644][10667] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 11:57:16,820][10656] Decorrelating experience for 0 frames...
[2023-02-26 11:57:16,822][10658] Decorrelating experience for 0 frames...
[2023-02-26 11:57:16,823][10664] Decorrelating experience for 0 frames...
[2023-02-26 11:57:16,823][10659] Decorrelating experience for 0 frames...
[2023-02-26 11:57:16,820][10657] Decorrelating experience for 0 frames...
[2023-02-26 11:57:16,825][10661] Decorrelating experience for 0 frames...
[2023-02-26 11:57:17,826][10656] Decorrelating experience for 32 frames...
[2023-02-26 11:57:17,827][10658] Decorrelating experience for 32 frames...
[2023-02-26 11:57:17,840][10664] Decorrelating experience for 32 frames...
[2023-02-26 11:57:17,848][10667] Decorrelating experience for 0 frames...
[2023-02-26 11:57:17,854][10661] Decorrelating experience for 32 frames...
[2023-02-26 11:57:17,865][10657] Decorrelating experience for 32 frames...
[2023-02-26 11:57:19,116][10659] Decorrelating experience for 32 frames...
[2023-02-26 11:57:19,127][10667] Decorrelating experience for 32 frames...
[2023-02-26 11:57:19,681][10660] Decorrelating experience for 0 frames...
[2023-02-26 11:57:19,832][00595] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-02-26 11:57:19,983][10659] Decorrelating experience for 64 frames...
[2023-02-26 11:57:19,984][10656] Decorrelating experience for 64 frames...
[2023-02-26 11:57:19,995][10658] Decorrelating experience for 64 frames...
[2023-02-26 11:57:20,010][10664] Decorrelating experience for 64 frames...
[2023-02-26 11:57:21,002][10660] Decorrelating experience for 32 frames...
[2023-02-26 11:57:21,290][10658] Decorrelating experience for 96 frames...
[2023-02-26 11:57:21,291][10664] Decorrelating experience for 96 frames...
[2023-02-26 11:57:21,863][10657] Decorrelating experience for 64 frames...
[2023-02-26 11:57:21,914][10661] Decorrelating experience for 64 frames...
[2023-02-26 11:57:22,482][10659] Decorrelating experience for 96 frames...
[2023-02-26 11:57:23,213][10660] Decorrelating experience for 64 frames...
[2023-02-26 11:57:23,301][10657] Decorrelating experience for 96 frames...
[2023-02-26 11:57:23,331][10661] Decorrelating experience for 96 frames...
[2023-02-26 11:57:23,656][10667] Decorrelating experience for 64 frames...
[2023-02-26 11:57:24,052][10667] Decorrelating experience for 96 frames...
[2023-02-26 11:57:24,240][10656] Decorrelating experience for 96 frames...
[2023-02-26 11:57:24,537][10660] Decorrelating experience for 96 frames...
[2023-02-26 11:57:24,832][00595] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-02-26 11:57:29,057][10641] Signal inference workers to stop experience collection...
[2023-02-26 11:57:29,081][10654] InferenceWorker_p0-w0: stopping experience collection
[2023-02-26 11:57:29,832][00595] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 60.4. Samples: 906. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-02-26 11:57:29,835][00595] Avg episode reward: [(0, '1.669')]
[2023-02-26 11:57:31,783][10641] Signal inference workers to resume experience collection...
[2023-02-26 11:57:31,784][10654] InferenceWorker_p0-w0: resuming experience collection
[2023-02-26 11:57:34,833][00595] Fps is (10 sec: 1638.4, 60 sec: 819.2, 300 sec: 819.2). Total num frames: 16384. Throughput: 0: 159.6. Samples: 3192. Policy #0 lag: (min: 0.0, avg: 0.3, max: 2.0)
[2023-02-26 11:57:34,838][00595] Avg episode reward: [(0, '3.264')]
[2023-02-26 11:57:39,832][00595] Fps is (10 sec: 3276.8, 60 sec: 1310.7, 300 sec: 1310.7). Total num frames: 32768. Throughput: 0: 348.2. Samples: 8706. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-02-26 11:57:39,836][00595] Avg episode reward: [(0, '3.830')]
[2023-02-26 11:57:42,261][10654] Updated weights for policy 0, policy_version 10 (0.0017)
[2023-02-26 11:57:44,832][00595] Fps is (10 sec: 2867.3, 60 sec: 1501.9, 300 sec: 1501.9). Total num frames: 45056. Throughput: 0: 367.0. Samples: 11010. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:57:44,835][00595] Avg episode reward: [(0, '4.329')]
[2023-02-26 11:57:49,832][00595] Fps is (10 sec: 3686.5, 60 sec: 1989.5, 300 sec: 1989.5). Total num frames: 69632. Throughput: 0: 477.0. Samples: 16694. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:57:49,840][00595] Avg episode reward: [(0, '4.448')]
[2023-02-26 11:57:52,073][10654] Updated weights for policy 0, policy_version 20 (0.0026)
[2023-02-26 11:57:54,833][00595] Fps is (10 sec: 4915.0, 60 sec: 2355.2, 300 sec: 2355.2). Total num frames: 94208. Throughput: 0: 598.0. Samples: 23920. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 11:57:54,836][00595] Avg episode reward: [(0, '4.452')]
[2023-02-26 11:57:59,834][00595] Fps is (10 sec: 4095.2, 60 sec: 2457.5, 300 sec: 2457.5). Total num frames: 110592. Throughput: 0: 594.5. Samples: 26752. Policy #0 lag: (min: 0.0, avg: 0.2, max: 1.0)
[2023-02-26 11:57:59,837][00595] Avg episode reward: [(0, '4.421')]
[2023-02-26 11:57:59,843][10641] Saving new best policy, reward=4.421!
[2023-02-26 11:58:03,337][10654] Updated weights for policy 0, policy_version 30 (0.0021)
[2023-02-26 11:58:04,832][00595] Fps is (10 sec: 2867.3, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 122880. Throughput: 0: 693.6. Samples: 31212. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-02-26 11:58:04,839][00595] Avg episode reward: [(0, '4.336')]
[2023-02-26 11:58:09,832][00595] Fps is (10 sec: 3277.5, 60 sec: 2606.6, 300 sec: 2606.6). Total num frames: 143360. Throughput: 0: 821.6. Samples: 36972. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-02-26 11:58:09,840][00595] Avg episode reward: [(0, '4.389')]
[2023-02-26 11:58:13,349][10654] Updated weights for policy 0, policy_version 40 (0.0011)
[2023-02-26 11:58:14,832][00595] Fps is (10 sec: 4505.6, 60 sec: 2798.9, 300 sec: 2798.9). Total num frames: 167936. Throughput: 0: 880.1. Samples: 40510. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:58:14,835][00595] Avg episode reward: [(0, '4.601')]
[2023-02-26 11:58:14,847][10641] Saving new best policy, reward=4.601!
[2023-02-26 11:58:19,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3072.0, 300 sec: 2835.7). Total num frames: 184320. Throughput: 0: 954.9. Samples: 46160. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:58:19,838][00595] Avg episode reward: [(0, '4.527')]
[2023-02-26 11:58:24,833][00595] Fps is (10 sec: 3276.7, 60 sec: 3345.1, 300 sec: 2867.2). Total num frames: 200704. Throughput: 0: 929.5. Samples: 50536. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 11:58:24,835][00595] Avg episode reward: [(0, '4.599')]
[2023-02-26 11:58:25,812][10654] Updated weights for policy 0, policy_version 50 (0.0011)
[2023-02-26 11:58:29,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3686.4, 300 sec: 2949.1). Total num frames: 221184. Throughput: 0: 949.1. Samples: 53718. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 11:58:29,839][00595] Avg episode reward: [(0, '4.501')]
[2023-02-26 11:58:34,582][10654] Updated weights for policy 0, policy_version 60 (0.0016)
[2023-02-26 11:58:34,832][00595] Fps is (10 sec: 4505.8, 60 sec: 3822.9, 300 sec: 3072.0). Total num frames: 245760. Throughput: 0: 980.3. Samples: 60806. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:58:34,840][00595] Avg episode reward: [(0, '4.393')]
[2023-02-26 11:58:39,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3084.1). Total num frames: 262144. Throughput: 0: 934.2. Samples: 65958. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:58:39,837][00595] Avg episode reward: [(0, '4.387')]
[2023-02-26 11:58:44,833][00595] Fps is (10 sec: 2867.2, 60 sec: 3822.9, 300 sec: 3049.2). Total num frames: 274432. Throughput: 0: 921.3. Samples: 68208. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:58:44,837][00595] Avg episode reward: [(0, '4.390')]
[2023-02-26 11:58:44,847][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000067_274432.pth...
[2023-02-26 11:58:46,956][10654] Updated weights for policy 0, policy_version 70 (0.0025)
[2023-02-26 11:58:49,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3147.5). Total num frames: 299008. Throughput: 0: 954.4. Samples: 74162. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:58:49,835][00595] Avg episode reward: [(0, '4.524')]
[2023-02-26 11:58:54,833][00595] Fps is (10 sec: 4915.0, 60 sec: 3822.9, 300 sec: 3235.8). Total num frames: 323584. Throughput: 0: 986.4. Samples: 81362. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 11:58:54,840][00595] Avg episode reward: [(0, '4.407')]
[2023-02-26 11:58:55,697][10654] Updated weights for policy 0, policy_version 80 (0.0012)
[2023-02-26 11:58:59,837][00595] Fps is (10 sec: 3684.6, 60 sec: 3754.5, 300 sec: 3198.6). Total num frames: 335872. Throughput: 0: 961.4. Samples: 83776. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 11:58:59,840][00595] Avg episode reward: [(0, '4.250')]
[2023-02-26 11:59:04,832][00595] Fps is (10 sec: 2867.4, 60 sec: 3822.9, 300 sec: 3202.3). Total num frames: 352256. Throughput: 0: 932.4. Samples: 88120. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:59:04,834][00595] Avg episode reward: [(0, '4.383')]
[2023-02-26 11:59:07,808][10654] Updated weights for policy 0, policy_version 90 (0.0013)
[2023-02-26 11:59:09,832][00595] Fps is (10 sec: 4098.0, 60 sec: 3891.2, 300 sec: 3276.8). Total num frames: 376832. Throughput: 0: 981.7. Samples: 94710. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-26 11:59:09,837][00595] Avg episode reward: [(0, '4.461')]
[2023-02-26 11:59:14,832][00595] Fps is (10 sec: 4915.2, 60 sec: 3891.2, 300 sec: 3345.1). Total num frames: 401408. Throughput: 0: 989.8. Samples: 98258. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 11:59:14,835][00595] Avg episode reward: [(0, '4.582')]
[2023-02-26 11:59:17,534][10654] Updated weights for policy 0, policy_version 100 (0.0021)
[2023-02-26 11:59:19,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3309.6). Total num frames: 413696. Throughput: 0: 955.8. Samples: 103818. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:59:19,838][00595] Avg episode reward: [(0, '4.579')]
[2023-02-26 11:59:24,832][00595] Fps is (10 sec: 2867.2, 60 sec: 3823.0, 300 sec: 3308.3). Total num frames: 430080. Throughput: 0: 942.4. Samples: 108368. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 11:59:24,835][00595] Avg episode reward: [(0, '4.611')]
[2023-02-26 11:59:24,842][10641] Saving new best policy, reward=4.611!
[2023-02-26 11:59:28,466][10654] Updated weights for policy 0, policy_version 110 (0.0015)
[2023-02-26 11:59:29,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3367.8). Total num frames: 454656. Throughput: 0: 972.4. Samples: 111964. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 11:59:29,835][00595] Avg episode reward: [(0, '4.546')]
[2023-02-26 11:59:34,832][00595] Fps is (10 sec: 4915.2, 60 sec: 3891.2, 300 sec: 3423.1). Total num frames: 479232. Throughput: 0: 998.9. Samples: 119114. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 11:59:34,838][00595] Avg episode reward: [(0, '4.524')]
[2023-02-26 11:59:38,721][10654] Updated weights for policy 0, policy_version 120 (0.0014)
[2023-02-26 11:59:39,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3389.8). Total num frames: 491520. Throughput: 0: 947.0. Samples: 123978. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 11:59:39,835][00595] Avg episode reward: [(0, '4.591')]
[2023-02-26 11:59:44,833][00595] Fps is (10 sec: 2457.5, 60 sec: 3822.9, 300 sec: 3358.7). Total num frames: 503808. Throughput: 0: 919.6. Samples: 125152. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 11:59:44,840][00595] Avg episode reward: [(0, '4.378')]
[2023-02-26 11:59:49,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3408.9). Total num frames: 528384. Throughput: 0: 960.0. Samples: 131318. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 11:59:49,840][00595] Avg episode reward: [(0, '4.627')]
[2023-02-26 11:59:49,843][10641] Saving new best policy, reward=4.627!
[2023-02-26 11:59:50,572][10654] Updated weights for policy 0, policy_version 130 (0.0017)
[2023-02-26 11:59:54,832][00595] Fps is (10 sec: 4505.7, 60 sec: 3754.7, 300 sec: 3430.4). Total num frames: 548864. Throughput: 0: 965.8. Samples: 138170. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 11:59:54,835][00595] Avg episode reward: [(0, '4.616')]
[2023-02-26 11:59:59,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3823.2, 300 sec: 3425.7). Total num frames: 565248. Throughput: 0: 933.8. Samples: 140280. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 11:59:59,835][00595] Avg episode reward: [(0, '4.432')]
[2023-02-26 12:00:02,435][10654] Updated weights for policy 0, policy_version 140 (0.0021)
[2023-02-26 12:00:04,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3822.9, 300 sec: 3421.4). Total num frames: 581632. Throughput: 0: 910.8. Samples: 144806. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:00:04,839][00595] Avg episode reward: [(0, '4.541')]
[2023-02-26 12:00:09,833][00595] Fps is (10 sec: 4095.9, 60 sec: 3822.9, 300 sec: 3464.0). Total num frames: 606208. Throughput: 0: 968.5. Samples: 151952. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:00:09,838][00595] Avg episode reward: [(0, '4.582')]
[2023-02-26 12:00:11,345][10654] Updated weights for policy 0, policy_version 150 (0.0014)
[2023-02-26 12:00:14,837][00595] Fps is (10 sec: 4505.6, 60 sec: 3754.7, 300 sec: 3481.6). Total num frames: 626688. Throughput: 0: 967.6. Samples: 155504. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:00:14,846][00595] Avg episode reward: [(0, '4.470')]
[2023-02-26 12:00:19,832][00595] Fps is (10 sec: 3686.5, 60 sec: 3822.9, 300 sec: 3476.1). Total num frames: 643072. Throughput: 0: 922.5. Samples: 160626. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:00:19,834][00595] Avg episode reward: [(0, '4.521')]
[2023-02-26 12:00:23,192][10654] Updated weights for policy 0, policy_version 160 (0.0021)
[2023-02-26 12:00:24,833][00595] Fps is (10 sec: 3276.7, 60 sec: 3822.9, 300 sec: 3470.8). Total num frames: 659456. Throughput: 0: 929.7. Samples: 165816. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:00:24,842][00595] Avg episode reward: [(0, '4.740')]
[2023-02-26 12:00:24,854][10641] Saving new best policy, reward=4.740!
[2023-02-26 12:00:29,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3507.9). Total num frames: 684032. Throughput: 0: 981.1. Samples: 169300. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:00:29,834][00595] Avg episode reward: [(0, '4.446')]
[2023-02-26 12:00:32,032][10654] Updated weights for policy 0, policy_version 170 (0.0013)
[2023-02-26 12:00:34,832][00595] Fps is (10 sec: 4505.7, 60 sec: 3754.7, 300 sec: 3522.6). Total num frames: 704512. Throughput: 0: 1000.4. Samples: 176336. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:00:34,836][00595] Avg episode reward: [(0, '4.373')]
[2023-02-26 12:00:39,838][00595] Fps is (10 sec: 3684.4, 60 sec: 3822.6, 300 sec: 3516.5). Total num frames: 720896. Throughput: 0: 948.0. Samples: 180834. Policy #0 lag: (min: 0.0, avg: 0.3, max: 1.0)
[2023-02-26 12:00:39,840][00595] Avg episode reward: [(0, '4.583')]
[2023-02-26 12:00:43,897][10654] Updated weights for policy 0, policy_version 180 (0.0028)
[2023-02-26 12:00:44,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3530.4). Total num frames: 741376. Throughput: 0: 954.8. Samples: 183248. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:00:44,840][00595] Avg episode reward: [(0, '4.676')]
[2023-02-26 12:00:44,852][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000181_741376.pth...
[2023-02-26 12:00:49,832][00595] Fps is (10 sec: 4098.2, 60 sec: 3891.2, 300 sec: 3543.5). Total num frames: 761856. Throughput: 0: 1009.7. Samples: 190244. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:00:49,841][00595] Avg episode reward: [(0, '4.694')]
[2023-02-26 12:00:52,569][10654] Updated weights for policy 0, policy_version 190 (0.0011)
[2023-02-26 12:00:54,836][00595] Fps is (10 sec: 4094.5, 60 sec: 3891.0, 300 sec: 3556.0). Total num frames: 782336. Throughput: 0: 995.7. Samples: 196762. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:00:54,839][00595] Avg episode reward: [(0, '4.720')]
[2023-02-26 12:00:59,837][00595] Fps is (10 sec: 3684.8, 60 sec: 3890.9, 300 sec: 3549.8). Total num frames: 798720. Throughput: 0: 969.2. Samples: 199122. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:00:59,840][00595] Avg episode reward: [(0, '4.760')]
[2023-02-26 12:00:59,846][10641] Saving new best policy, reward=4.760!
[2023-02-26 12:01:04,615][10654] Updated weights for policy 0, policy_version 200 (0.0035)
[2023-02-26 12:01:04,832][00595] Fps is (10 sec: 3687.7, 60 sec: 3959.5, 300 sec: 3561.7). Total num frames: 819200. Throughput: 0: 963.9. Samples: 204000. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:01:04,838][00595] Avg episode reward: [(0, '4.690')]
[2023-02-26 12:01:09,832][00595] Fps is (10 sec: 4507.6, 60 sec: 3959.5, 300 sec: 3590.5). Total num frames: 843776. Throughput: 0: 1008.9. Samples: 211216. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:01:09,834][00595] Avg episode reward: [(0, '4.579')]
[2023-02-26 12:01:13,419][10654] Updated weights for policy 0, policy_version 210 (0.0014)
[2023-02-26 12:01:14,834][00595] Fps is (10 sec: 4505.1, 60 sec: 3959.4, 300 sec: 3601.1). Total num frames: 864256. Throughput: 0: 1009.3. Samples: 214722. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:01:14,836][00595] Avg episode reward: [(0, '4.833')]
[2023-02-26 12:01:14,854][10641] Saving new best policy, reward=4.833!
[2023-02-26 12:01:19,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3577.7). Total num frames: 876544. Throughput: 0: 954.3. Samples: 219280. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:01:19,834][00595] Avg episode reward: [(0, '4.885')]
[2023-02-26 12:01:19,837][10641] Saving new best policy, reward=4.885!
[2023-02-26 12:01:24,832][00595] Fps is (10 sec: 3277.2, 60 sec: 3959.5, 300 sec: 3588.1). Total num frames: 897024. Throughput: 0: 977.1. Samples: 224796. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:01:24,835][00595] Avg episode reward: [(0, '4.909')]
[2023-02-26 12:01:24,851][10641] Saving new best policy, reward=4.909!
[2023-02-26 12:01:25,507][10654] Updated weights for policy 0, policy_version 220 (0.0020)
[2023-02-26 12:01:29,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3614.1). Total num frames: 921600. Throughput: 0: 999.6. Samples: 228230. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:01:29,835][00595] Avg episode reward: [(0, '4.758')]
[2023-02-26 12:01:34,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3607.6). Total num frames: 937984. Throughput: 0: 993.8. Samples: 234964. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:01:34,835][00595] Avg episode reward: [(0, '4.896')]
[2023-02-26 12:01:34,913][10654] Updated weights for policy 0, policy_version 230 (0.0011)
[2023-02-26 12:01:39,834][00595] Fps is (10 sec: 3276.3, 60 sec: 3891.5, 300 sec: 3601.4). Total num frames: 954368. Throughput: 0: 948.9. Samples: 239462. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:01:39,838][00595] Avg episode reward: [(0, '4.866')]
[2023-02-26 12:01:44,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3610.5). Total num frames: 974848. Throughput: 0: 954.4. Samples: 242066. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:01:44,839][00595] Avg episode reward: [(0, '4.932')]
[2023-02-26 12:01:44,851][10641] Saving new best policy, reward=4.932!
[2023-02-26 12:01:46,134][10654] Updated weights for policy 0, policy_version 240 (0.0017)
[2023-02-26 12:01:49,835][00595] Fps is (10 sec: 4504.9, 60 sec: 3959.3, 300 sec: 3634.2). Total num frames: 999424. Throughput: 0: 1005.3. Samples: 249242. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:01:49,838][00595] Avg episode reward: [(0, '4.894')]
[2023-02-26 12:01:54,834][00595] Fps is (10 sec: 4505.6, 60 sec: 3959.7, 300 sec: 3642.5). Total num frames: 1019904. Throughput: 0: 982.0. Samples: 255408. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:01:54,839][00595] Avg episode reward: [(0, '4.944')]
[2023-02-26 12:01:54,854][10641] Saving new best policy, reward=4.944!
[2023-02-26 12:01:56,051][10654] Updated weights for policy 0, policy_version 250 (0.0014)
[2023-02-26 12:01:59,832][00595] Fps is (10 sec: 3277.7, 60 sec: 3891.5, 300 sec: 3621.7). Total num frames: 1032192. Throughput: 0: 951.5. Samples: 257538. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:01:59,836][00595] Avg episode reward: [(0, '5.014')]
[2023-02-26 12:01:59,843][10641] Saving new best policy, reward=5.014!
[2023-02-26 12:02:04,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3629.9). Total num frames: 1052672. Throughput: 0: 970.4. Samples: 262948. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:02:04,835][00595] Avg episode reward: [(0, '4.710')]
[2023-02-26 12:02:06,809][10654] Updated weights for policy 0, policy_version 260 (0.0031)
[2023-02-26 12:02:09,832][00595] Fps is (10 sec: 4505.7, 60 sec: 3891.2, 300 sec: 3651.7). Total num frames: 1077248. Throughput: 0: 1005.9. Samples: 270060. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:02:09,839][00595] Avg episode reward: [(0, '4.844')]
[2023-02-26 12:02:14,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3823.0, 300 sec: 3707.2). Total num frames: 1093632. Throughput: 0: 996.6. Samples: 273078. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-02-26 12:02:14,841][00595] Avg episode reward: [(0, '4.938')]
[2023-02-26 12:02:17,985][10654] Updated weights for policy 0, policy_version 270 (0.0011)
[2023-02-26 12:02:19,832][00595] Fps is (10 sec: 3276.7, 60 sec: 3891.2, 300 sec: 3762.8). Total num frames: 1110016. Throughput: 0: 946.4. Samples: 277552. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-02-26 12:02:19,839][00595] Avg episode reward: [(0, '4.837')]
[2023-02-26 12:02:24,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3832.2). Total num frames: 1130496. Throughput: 0: 980.7. Samples: 283594. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:02:24,840][00595] Avg episode reward: [(0, '4.647')]
[2023-02-26 12:02:27,738][10654] Updated weights for policy 0, policy_version 280 (0.0014)
[2023-02-26 12:02:29,832][00595] Fps is (10 sec: 4505.7, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 1155072. Throughput: 0: 1002.4. Samples: 287172. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:02:29,835][00595] Avg episode reward: [(0, '4.590')]
[2023-02-26 12:02:34,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 1171456. Throughput: 0: 978.0. Samples: 293248. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:02:34,839][00595] Avg episode reward: [(0, '4.734')]
[2023-02-26 12:02:39,432][10654] Updated weights for policy 0, policy_version 290 (0.0011)
[2023-02-26 12:02:39,832][00595] Fps is (10 sec: 3276.7, 60 sec: 3891.3, 300 sec: 3873.8). Total num frames: 1187840. Throughput: 0: 938.4. Samples: 297638. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-26 12:02:39,836][00595] Avg episode reward: [(0, '4.974')]
[2023-02-26 12:02:44,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 1208320. Throughput: 0: 957.6. Samples: 300628. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:02:44,835][00595] Avg episode reward: [(0, '5.177')]
[2023-02-26 12:02:44,845][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000295_1208320.pth...
[2023-02-26 12:02:44,955][10641] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000067_274432.pth
[2023-02-26 12:02:44,964][10641] Saving new best policy, reward=5.177!
[2023-02-26 12:02:48,679][10654] Updated weights for policy 0, policy_version 300 (0.0019)
[2023-02-26 12:02:49,832][00595] Fps is (10 sec: 4505.7, 60 sec: 3891.4, 300 sec: 3860.0). Total num frames: 1232896. Throughput: 0: 994.8. Samples: 307714. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:02:49,834][00595] Avg episode reward: [(0, '4.818')]
[2023-02-26 12:02:54,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 1249280. Throughput: 0: 955.8. Samples: 313070. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:02:54,838][00595] Avg episode reward: [(0, '4.692')]
[2023-02-26 12:02:59,833][00595] Fps is (10 sec: 3276.6, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1265664. Throughput: 0: 938.4. Samples: 315308. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:02:59,841][00595] Avg episode reward: [(0, '4.771')]
[2023-02-26 12:03:00,745][10654] Updated weights for policy 0, policy_version 310 (0.0022)
[2023-02-26 12:03:04,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1286144. Throughput: 0: 968.5. Samples: 321134. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:03:04,840][00595] Avg episode reward: [(0, '5.199')]
[2023-02-26 12:03:04,851][10641] Saving new best policy, reward=5.199!
[2023-02-26 12:03:09,502][10654] Updated weights for policy 0, policy_version 320 (0.0021)
[2023-02-26 12:03:09,832][00595] Fps is (10 sec: 4505.8, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1310720. Throughput: 0: 989.3. Samples: 328114. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:03:09,834][00595] Avg episode reward: [(0, '5.229')]
[2023-02-26 12:03:09,840][10641] Saving new best policy, reward=5.229!
[2023-02-26 12:03:14,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1327104. Throughput: 0: 967.0. Samples: 330686. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:03:14,837][00595] Avg episode reward: [(0, '5.386')]
[2023-02-26 12:03:14,850][10641] Saving new best policy, reward=5.386!
[2023-02-26 12:03:19,833][00595] Fps is (10 sec: 2867.1, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 1339392. Throughput: 0: 929.6. Samples: 335082. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:03:19,838][00595] Avg episode reward: [(0, '5.366')]
[2023-02-26 12:03:21,932][10654] Updated weights for policy 0, policy_version 330 (0.0012)
[2023-02-26 12:03:24,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1363968. Throughput: 0: 975.4. Samples: 341532. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:03:24,838][00595] Avg episode reward: [(0, '5.305')]
[2023-02-26 12:03:29,832][00595] Fps is (10 sec: 4915.4, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1388544. Throughput: 0: 986.1. Samples: 345004. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:03:29,835][00595] Avg episode reward: [(0, '5.229')]
[2023-02-26 12:03:30,734][10654] Updated weights for policy 0, policy_version 340 (0.0020)
[2023-02-26 12:03:34,834][00595] Fps is (10 sec: 4095.2, 60 sec: 3891.1, 300 sec: 3873.8). Total num frames: 1404928. Throughput: 0: 954.8. Samples: 350684. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:03:34,837][00595] Avg episode reward: [(0, '5.091')]
[2023-02-26 12:03:39,832][00595] Fps is (10 sec: 2867.2, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 1417216. Throughput: 0: 937.9. Samples: 355274. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:03:39,837][00595] Avg episode reward: [(0, '5.066')]
[2023-02-26 12:03:42,900][10654] Updated weights for policy 0, policy_version 350 (0.0035)
[2023-02-26 12:03:44,832][00595] Fps is (10 sec: 3687.1, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1441792. Throughput: 0: 957.5. Samples: 358394. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:03:44,835][00595] Avg episode reward: [(0, '5.293')]
[2023-02-26 12:03:49,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 1462272. Throughput: 0: 986.7. Samples: 365536. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:03:49,835][00595] Avg episode reward: [(0, '5.380')]
[2023-02-26 12:03:52,449][10654] Updated weights for policy 0, policy_version 360 (0.0014)
[2023-02-26 12:03:54,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3822.9, 300 sec: 3873.9). Total num frames: 1478656. Throughput: 0: 946.3. Samples: 370696. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:03:54,838][00595] Avg episode reward: [(0, '5.314')]
[2023-02-26 12:03:59,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3823.0, 300 sec: 3873.8). Total num frames: 1495040. Throughput: 0: 939.2. Samples: 372948. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:03:59,840][00595] Avg episode reward: [(0, '5.293')]
[2023-02-26 12:04:03,962][10654] Updated weights for policy 0, policy_version 370 (0.0012)
[2023-02-26 12:04:04,835][00595] Fps is (10 sec: 3685.4, 60 sec: 3822.8, 300 sec: 3859.9). Total num frames: 1515520. Throughput: 0: 976.8. Samples: 379040. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:04:04,838][00595] Avg episode reward: [(0, '5.463')]
[2023-02-26 12:04:04,849][10641] Saving new best policy, reward=5.463!
[2023-02-26 12:04:09,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 1540096. Throughput: 0: 988.9. Samples: 386034. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:04:09,836][00595] Avg episode reward: [(0, '5.480')]
[2023-02-26 12:04:09,843][10641] Saving new best policy, reward=5.480!
[2023-02-26 12:04:13,992][10654] Updated weights for policy 0, policy_version 380 (0.0016)
[2023-02-26 12:04:14,835][00595] Fps is (10 sec: 4096.1, 60 sec: 3822.8, 300 sec: 3873.8). Total num frames: 1556480. Throughput: 0: 965.9. Samples: 388474. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:04:14,837][00595] Avg episode reward: [(0, '5.423')]
[2023-02-26 12:04:19,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1572864. Throughput: 0: 938.2. Samples: 392900. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:04:19,839][00595] Avg episode reward: [(0, '5.291')]
[2023-02-26 12:04:24,719][10654] Updated weights for policy 0, policy_version 390 (0.0014)
[2023-02-26 12:04:24,832][00595] Fps is (10 sec: 4097.0, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1597440. Throughput: 0: 984.8. Samples: 399590. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:04:24,835][00595] Avg episode reward: [(0, '5.199')]
[2023-02-26 12:04:29,835][00595] Fps is (10 sec: 4504.9, 60 sec: 3822.8, 300 sec: 3859.9). Total num frames: 1617920. Throughput: 0: 992.8. Samples: 403070. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:04:29,841][00595] Avg episode reward: [(0, '5.438')]
[2023-02-26 12:04:34,833][00595] Fps is (10 sec: 3686.0, 60 sec: 3823.0, 300 sec: 3873.8). Total num frames: 1634304. Throughput: 0: 953.5. Samples: 408444. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-26 12:04:34,838][00595] Avg episode reward: [(0, '5.601')]
[2023-02-26 12:04:34,857][10641] Saving new best policy, reward=5.601!
[2023-02-26 12:04:35,969][10654] Updated weights for policy 0, policy_version 400 (0.0019)
[2023-02-26 12:04:39,832][00595] Fps is (10 sec: 3277.3, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 1650688. Throughput: 0: 939.7. Samples: 412982. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:04:39,834][00595] Avg episode reward: [(0, '5.900')]
[2023-02-26 12:04:39,838][10641] Saving new best policy, reward=5.900!
[2023-02-26 12:04:44,832][00595] Fps is (10 sec: 3686.8, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 1671168. Throughput: 0: 964.3. Samples: 416342. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:04:44,835][00595] Avg episode reward: [(0, '6.149')]
[2023-02-26 12:04:44,903][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000409_1675264.pth...
[2023-02-26 12:04:45,024][10641] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000181_741376.pth
[2023-02-26 12:04:45,040][10641] Saving new best policy, reward=6.149!
[2023-02-26 12:04:45,910][10654] Updated weights for policy 0, policy_version 410 (0.0028)
[2023-02-26 12:04:49,834][00595] Fps is (10 sec: 4504.8, 60 sec: 3891.1, 300 sec: 3887.7). Total num frames: 1695744. Throughput: 0: 986.1. Samples: 423414. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:04:49,837][00595] Avg episode reward: [(0, '6.048')]
[2023-02-26 12:04:54,840][00595] Fps is (10 sec: 4092.8, 60 sec: 3890.7, 300 sec: 3887.6). Total num frames: 1712128. Throughput: 0: 942.2. Samples: 428440. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:04:54,842][00595] Avg episode reward: [(0, '5.788')]
[2023-02-26 12:04:57,518][10654] Updated weights for policy 0, policy_version 420 (0.0020)
[2023-02-26 12:04:59,833][00595] Fps is (10 sec: 2867.6, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 1724416. Throughput: 0: 936.6. Samples: 430620. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:04:59,839][00595] Avg episode reward: [(0, '5.994')]
[2023-02-26 12:05:04,832][00595] Fps is (10 sec: 3689.3, 60 sec: 3891.4, 300 sec: 3873.8). Total num frames: 1748992. Throughput: 0: 974.8. Samples: 436764. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:05:04,834][00595] Avg episode reward: [(0, '5.941')]
[2023-02-26 12:05:06,962][10654] Updated weights for policy 0, policy_version 430 (0.0040)
[2023-02-26 12:05:09,836][00595] Fps is (10 sec: 4913.7, 60 sec: 3891.0, 300 sec: 3887.7). Total num frames: 1773568. Throughput: 0: 985.7. Samples: 443952. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-26 12:05:09,841][00595] Avg episode reward: [(0, '5.818')]
[2023-02-26 12:05:14,837][00595] Fps is (10 sec: 3684.8, 60 sec: 3822.8, 300 sec: 3873.8). Total num frames: 1785856. Throughput: 0: 957.1. Samples: 446142. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:05:14,845][00595] Avg episode reward: [(0, '5.866')]
[2023-02-26 12:05:19,286][10654] Updated weights for policy 0, policy_version 440 (0.0025)
[2023-02-26 12:05:19,832][00595] Fps is (10 sec: 2868.1, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 1802240. Throughput: 0: 934.3. Samples: 450488. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:05:19,840][00595] Avg episode reward: [(0, '6.108')]
[2023-02-26 12:05:24,832][00595] Fps is (10 sec: 4097.8, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 1826816. Throughput: 0: 986.8. Samples: 457388. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-26 12:05:24,835][00595] Avg episode reward: [(0, '6.047')]
[2023-02-26 12:05:27,825][10654] Updated weights for policy 0, policy_version 450 (0.0012)
[2023-02-26 12:05:29,833][00595] Fps is (10 sec: 4915.1, 60 sec: 3891.3, 300 sec: 3887.7). Total num frames: 1851392. Throughput: 0: 992.6. Samples: 461010. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:05:29,837][00595] Avg episode reward: [(0, '6.246')]
[2023-02-26 12:05:29,840][10641] Saving new best policy, reward=6.246!
[2023-02-26 12:05:34,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3823.0, 300 sec: 3873.9). Total num frames: 1863680. Throughput: 0: 950.5. Samples: 466186. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:05:34,849][00595] Avg episode reward: [(0, '6.047')]
[2023-02-26 12:05:39,832][00595] Fps is (10 sec: 2867.3, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 1880064. Throughput: 0: 945.9. Samples: 470998. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:05:39,839][00595] Avg episode reward: [(0, '6.242')]
[2023-02-26 12:05:40,106][10654] Updated weights for policy 0, policy_version 460 (0.0015)
[2023-02-26 12:05:44,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 1904640. Throughput: 0: 977.7. Samples: 474618. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:05:44,839][00595] Avg episode reward: [(0, '6.314')]
[2023-02-26 12:05:44,856][10641] Saving new best policy, reward=6.314!
[2023-02-26 12:05:48,826][10654] Updated weights for policy 0, policy_version 470 (0.0022)
[2023-02-26 12:05:49,835][00595] Fps is (10 sec: 4504.5, 60 sec: 3822.9, 300 sec: 3873.9). Total num frames: 1925120. Throughput: 0: 995.3. Samples: 481554. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-02-26 12:05:49,843][00595] Avg episode reward: [(0, '5.908')]
[2023-02-26 12:05:54,834][00595] Fps is (10 sec: 3685.7, 60 sec: 3823.3, 300 sec: 3873.9). Total num frames: 1941504. Throughput: 0: 942.5. Samples: 486364. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-26 12:05:54,839][00595] Avg episode reward: [(0, '6.196')]
[2023-02-26 12:05:59,832][00595] Fps is (10 sec: 3277.6, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 1957888. Throughput: 0: 946.7. Samples: 488738. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:05:59,840][00595] Avg episode reward: [(0, '6.269')]
[2023-02-26 12:06:00,778][10654] Updated weights for policy 0, policy_version 480 (0.0020)
[2023-02-26 12:06:04,832][00595] Fps is (10 sec: 4096.8, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 1982464. Throughput: 0: 998.8. Samples: 495436. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:06:04,834][00595] Avg episode reward: [(0, '6.463')]
[2023-02-26 12:06:04,854][10641] Saving new best policy, reward=6.463!
[2023-02-26 12:06:09,662][10654] Updated weights for policy 0, policy_version 490 (0.0021)
[2023-02-26 12:06:09,832][00595] Fps is (10 sec: 4915.2, 60 sec: 3891.4, 300 sec: 3873.9). Total num frames: 2007040. Throughput: 0: 996.9. Samples: 502248. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:06:09,838][00595] Avg episode reward: [(0, '6.518')]
[2023-02-26 12:06:09,850][10641] Saving new best policy, reward=6.518!
[2023-02-26 12:06:14,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3891.5, 300 sec: 3873.8). Total num frames: 2019328. Throughput: 0: 965.7. Samples: 504466. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:06:14,843][00595] Avg episode reward: [(0, '7.092')]
[2023-02-26 12:06:14,853][10641] Saving new best policy, reward=7.092!
[2023-02-26 12:06:19,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3959.5, 300 sec: 3873.8). Total num frames: 2039808. Throughput: 0: 950.7. Samples: 508966. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:06:19,835][00595] Avg episode reward: [(0, '7.149')]
[2023-02-26 12:06:19,837][10641] Saving new best policy, reward=7.149!
[2023-02-26 12:06:21,537][10654] Updated weights for policy 0, policy_version 500 (0.0011)
[2023-02-26 12:06:24,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 2060288. Throughput: 0: 1000.0. Samples: 515996. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:06:24,835][00595] Avg episode reward: [(0, '6.885')]
[2023-02-26 12:06:29,833][00595] Fps is (10 sec: 4095.8, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 2080768. Throughput: 0: 997.4. Samples: 519500. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:06:29,838][00595] Avg episode reward: [(0, '6.747')]
[2023-02-26 12:06:31,178][10654] Updated weights for policy 0, policy_version 510 (0.0013)
[2023-02-26 12:06:34,833][00595] Fps is (10 sec: 3686.3, 60 sec: 3891.2, 300 sec: 3873.9). Total num frames: 2097152. Throughput: 0: 955.8. Samples: 524562. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:06:34,834][00595] Avg episode reward: [(0, '6.665')]
[2023-02-26 12:06:39,832][00595] Fps is (10 sec: 3686.5, 60 sec: 3959.5, 300 sec: 3873.8). Total num frames: 2117632. Throughput: 0: 961.3. Samples: 529620. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:06:39,835][00595] Avg episode reward: [(0, '6.504')]
[2023-02-26 12:06:42,530][10654] Updated weights for policy 0, policy_version 520 (0.0021)
[2023-02-26 12:06:44,832][00595] Fps is (10 sec: 4096.1, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 2138112. Throughput: 0: 986.0. Samples: 533108. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:06:44,835][00595] Avg episode reward: [(0, '6.733')]
[2023-02-26 12:06:44,846][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000522_2138112.pth...
[2023-02-26 12:06:44,965][10641] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000295_1208320.pth
[2023-02-26 12:06:49,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.4, 300 sec: 3860.0). Total num frames: 2158592. Throughput: 0: 988.0. Samples: 539898. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:06:49,836][00595] Avg episode reward: [(0, '6.345')]
[2023-02-26 12:06:52,888][10654] Updated weights for policy 0, policy_version 530 (0.0014)
[2023-02-26 12:06:54,836][00595] Fps is (10 sec: 3685.2, 60 sec: 3891.1, 300 sec: 3873.8). Total num frames: 2174976. Throughput: 0: 936.2. Samples: 544380. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:06:54,842][00595] Avg episode reward: [(0, '6.400')]
[2023-02-26 12:06:59,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3860.0). Total num frames: 2191360. Throughput: 0: 938.2. Samples: 546686. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:06:59,835][00595] Avg episode reward: [(0, '6.534')]
[2023-02-26 12:07:03,254][10654] Updated weights for policy 0, policy_version 540 (0.0021)
[2023-02-26 12:07:04,834][00595] Fps is (10 sec: 4096.7, 60 sec: 3891.1, 300 sec: 3859.9). Total num frames: 2215936. Throughput: 0: 994.1. Samples: 553702. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:07:04,836][00595] Avg episode reward: [(0, '6.399')]
[2023-02-26 12:07:09,832][00595] Fps is (10 sec: 4505.5, 60 sec: 3822.9, 300 sec: 3873.8). Total num frames: 2236416. Throughput: 0: 982.9. Samples: 560226. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:07:09,835][00595] Avg episode reward: [(0, '6.316')]
[2023-02-26 12:07:14,237][10654] Updated weights for policy 0, policy_version 550 (0.0021)
[2023-02-26 12:07:14,832][00595] Fps is (10 sec: 3687.0, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 2252800. Throughput: 0: 954.7. Samples: 562460. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:07:14,838][00595] Avg episode reward: [(0, '6.659')]
[2023-02-26 12:07:19,832][00595] Fps is (10 sec: 3276.9, 60 sec: 3822.9, 300 sec: 3860.0). Total num frames: 2269184. Throughput: 0: 949.0. Samples: 567266. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:07:19,840][00595] Avg episode reward: [(0, '7.091')]
[2023-02-26 12:07:24,015][10654] Updated weights for policy 0, policy_version 560 (0.0026)
[2023-02-26 12:07:24,834][00595] Fps is (10 sec: 4095.5, 60 sec: 3891.1, 300 sec: 3859.9). Total num frames: 2293760. Throughput: 0: 997.1. Samples: 574492. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:07:24,840][00595] Avg episode reward: [(0, '7.580')]
[2023-02-26 12:07:24,897][10641] Saving new best policy, reward=7.580!
[2023-02-26 12:07:29,833][00595] Fps is (10 sec: 4505.2, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 2314240. Throughput: 0: 1000.2. Samples: 578116. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:07:29,841][00595] Avg episode reward: [(0, '7.819')]
[2023-02-26 12:07:29,844][10641] Saving new best policy, reward=7.819!
[2023-02-26 12:07:34,832][00595] Fps is (10 sec: 3686.9, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 2330624. Throughput: 0: 947.5. Samples: 582536. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:07:34,836][00595] Avg episode reward: [(0, '8.209')]
[2023-02-26 12:07:34,848][10641] Saving new best policy, reward=8.209!
[2023-02-26 12:07:35,732][10654] Updated weights for policy 0, policy_version 570 (0.0016)
[2023-02-26 12:07:39,832][00595] Fps is (10 sec: 3686.7, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 2351104. Throughput: 0: 971.7. Samples: 588102. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:07:39,835][00595] Avg episode reward: [(0, '7.738')]
[2023-02-26 12:07:44,724][10654] Updated weights for policy 0, policy_version 580 (0.0018)
[2023-02-26 12:07:44,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3873.8). Total num frames: 2375680. Throughput: 0: 1000.3. Samples: 591700. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:07:44,840][00595] Avg episode reward: [(0, '7.319')]
[2023-02-26 12:07:49,834][00595] Fps is (10 sec: 4095.4, 60 sec: 3891.1, 300 sec: 3873.8). Total num frames: 2392064. Throughput: 0: 993.2. Samples: 598398. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:07:49,841][00595] Avg episode reward: [(0, '7.557')]
[2023-02-26 12:07:54,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3891.4, 300 sec: 3873.8). Total num frames: 2408448. Throughput: 0: 946.8. Samples: 602834. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:07:54,836][00595] Avg episode reward: [(0, '7.289')]
[2023-02-26 12:07:56,799][10654] Updated weights for policy 0, policy_version 590 (0.0027)
[2023-02-26 12:07:59,832][00595] Fps is (10 sec: 3686.9, 60 sec: 3959.5, 300 sec: 3873.8). Total num frames: 2428928. Throughput: 0: 954.1. Samples: 605394. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:07:59,835][00595] Avg episode reward: [(0, '7.911')]
[2023-02-26 12:08:04,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3959.6, 300 sec: 3873.8). Total num frames: 2453504. Throughput: 0: 1005.8. Samples: 612526. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:08:04,841][00595] Avg episode reward: [(0, '8.247')]
[2023-02-26 12:08:04,853][10641] Saving new best policy, reward=8.247!
[2023-02-26 12:08:05,694][10654] Updated weights for policy 0, policy_version 600 (0.0020)
[2023-02-26 12:08:09,836][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 2469888. Throughput: 0: 975.0. Samples: 618364. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:08:09,841][00595] Avg episode reward: [(0, '8.421')]
[2023-02-26 12:08:09,844][10641] Saving new best policy, reward=8.421!
[2023-02-26 12:08:14,833][00595] Fps is (10 sec: 3276.7, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 2486272. Throughput: 0: 943.1. Samples: 620554. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-26 12:08:14,844][00595] Avg episode reward: [(0, '8.719')]
[2023-02-26 12:08:14,862][10641] Saving new best policy, reward=8.719!
[2023-02-26 12:08:17,977][10654] Updated weights for policy 0, policy_version 610 (0.0032)
[2023-02-26 12:08:19,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3873.8). Total num frames: 2506752. Throughput: 0: 962.4. Samples: 625842. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:08:19,838][00595] Avg episode reward: [(0, '9.217')]
[2023-02-26 12:08:19,844][10641] Saving new best policy, reward=9.217!
[2023-02-26 12:08:24,832][00595] Fps is (10 sec: 4096.1, 60 sec: 3891.3, 300 sec: 3860.0). Total num frames: 2527232. Throughput: 0: 999.0. Samples: 633056. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:08:24,837][00595] Avg episode reward: [(0, '9.276')]
[2023-02-26 12:08:24,845][10641] Saving new best policy, reward=9.276!
[2023-02-26 12:08:26,716][10654] Updated weights for policy 0, policy_version 620 (0.0026)
[2023-02-26 12:08:29,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3873.9). Total num frames: 2547712. Throughput: 0: 989.0. Samples: 636206. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:08:29,835][00595] Avg episode reward: [(0, '8.640')]
[2023-02-26 12:08:34,833][00595] Fps is (10 sec: 3686.3, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 2564096. Throughput: 0: 943.0. Samples: 640834. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:08:34,835][00595] Avg episode reward: [(0, '8.547')]
[2023-02-26 12:08:38,515][10654] Updated weights for policy 0, policy_version 630 (0.0012)
[2023-02-26 12:08:39,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 2584576. Throughput: 0: 975.8. Samples: 646744. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:08:39,839][00595] Avg episode reward: [(0, '8.766')]
[2023-02-26 12:08:44,832][00595] Fps is (10 sec: 4505.8, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 2609152. Throughput: 0: 997.2. Samples: 650270. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:08:44,836][00595] Avg episode reward: [(0, '9.726')]
[2023-02-26 12:08:44,849][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000637_2609152.pth...
[2023-02-26 12:08:44,956][10641] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000409_1675264.pth
[2023-02-26 12:08:44,969][10641] Saving new best policy, reward=9.726!
[2023-02-26 12:08:47,873][10654] Updated weights for policy 0, policy_version 640 (0.0013)
[2023-02-26 12:08:49,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.3, 300 sec: 3887.7). Total num frames: 2625536. Throughput: 0: 973.9. Samples: 656350. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:08:49,837][00595] Avg episode reward: [(0, '9.930')]
[2023-02-26 12:08:49,845][10641] Saving new best policy, reward=9.930!
[2023-02-26 12:08:54,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 2641920. Throughput: 0: 942.6. Samples: 660780. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:08:54,837][00595] Avg episode reward: [(0, '9.794')]
[2023-02-26 12:08:59,629][10654] Updated weights for policy 0, policy_version 650 (0.0017)
[2023-02-26 12:08:59,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3887.8). Total num frames: 2662400. Throughput: 0: 957.0. Samples: 663620. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
[2023-02-26 12:08:59,839][00595] Avg episode reward: [(0, '10.195')]
[2023-02-26 12:08:59,842][10641] Saving new best policy, reward=10.195!
[2023-02-26 12:09:04,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 2686976. Throughput: 0: 1000.0. Samples: 670844. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:09:04,834][00595] Avg episode reward: [(0, '10.030')]
[2023-02-26 12:09:09,403][10654] Updated weights for policy 0, policy_version 660 (0.0013)
[2023-02-26 12:09:09,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3887.8). Total num frames: 2703360. Throughput: 0: 965.9. Samples: 676520. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:09:09,839][00595] Avg episode reward: [(0, '10.134')]
[2023-02-26 12:09:14,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 2719744. Throughput: 0: 946.3. Samples: 678790. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:09:14,838][00595] Avg episode reward: [(0, '10.135')]
[2023-02-26 12:09:19,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3891.2, 300 sec: 3873.8). Total num frames: 2740224. Throughput: 0: 972.0. Samples: 684572. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:09:19,840][00595] Avg episode reward: [(0, '9.681')]
[2023-02-26 12:09:20,286][10654] Updated weights for policy 0, policy_version 670 (0.0032)
[2023-02-26 12:09:24,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3959.5, 300 sec: 3887.7). Total num frames: 2764800. Throughput: 0: 1002.2. Samples: 691842. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:09:24,837][00595] Avg episode reward: [(0, '9.373')]
[2023-02-26 12:09:29,836][00595] Fps is (10 sec: 4094.6, 60 sec: 3891.0, 300 sec: 3887.7). Total num frames: 2781184. Throughput: 0: 988.9. Samples: 694774. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:09:29,838][00595] Avg episode reward: [(0, '9.223')]
[2023-02-26 12:09:30,187][10654] Updated weights for policy 0, policy_version 680 (0.0038)
[2023-02-26 12:09:34,833][00595] Fps is (10 sec: 3276.5, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 2797568. Throughput: 0: 951.2. Samples: 699156. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:09:34,838][00595] Avg episode reward: [(0, '9.756')]
[2023-02-26 12:09:39,832][00595] Fps is (10 sec: 3687.6, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 2818048. Throughput: 0: 995.6. Samples: 705584. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:09:39,839][00595] Avg episode reward: [(0, '10.223')]
[2023-02-26 12:09:39,842][10641] Saving new best policy, reward=10.223!
[2023-02-26 12:09:40,866][10654] Updated weights for policy 0, policy_version 690 (0.0024)
[2023-02-26 12:09:44,832][00595] Fps is (10 sec: 4506.0, 60 sec: 3891.2, 300 sec: 3887.8). Total num frames: 2842624. Throughput: 0: 1011.5. Samples: 709138. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:09:44,839][00595] Avg episode reward: [(0, '10.625')]
[2023-02-26 12:09:44,849][10641] Saving new best policy, reward=10.625!
[2023-02-26 12:09:49,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3891.2, 300 sec: 3887.8). Total num frames: 2859008. Throughput: 0: 981.0. Samples: 714988. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:09:49,836][00595] Avg episode reward: [(0, '10.897')]
[2023-02-26 12:09:49,843][10641] Saving new best policy, reward=10.897!
[2023-02-26 12:09:51,635][10654] Updated weights for policy 0, policy_version 700 (0.0012)
[2023-02-26 12:09:54,833][00595] Fps is (10 sec: 3276.5, 60 sec: 3891.1, 300 sec: 3901.6). Total num frames: 2875392. Throughput: 0: 956.2. Samples: 719550. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:09:54,837][00595] Avg episode reward: [(0, '10.842')]
[2023-02-26 12:09:59,832][00595] Fps is (10 sec: 4096.1, 60 sec: 3959.5, 300 sec: 3901.6). Total num frames: 2899968. Throughput: 0: 976.7. Samples: 722742. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:09:59,835][00595] Avg episode reward: [(0, '11.877')]
[2023-02-26 12:09:59,837][10641] Saving new best policy, reward=11.877!
[2023-02-26 12:10:01,606][10654] Updated weights for policy 0, policy_version 710 (0.0022)
[2023-02-26 12:10:04,832][00595] Fps is (10 sec: 4506.1, 60 sec: 3891.2, 300 sec: 3887.8). Total num frames: 2920448. Throughput: 0: 1010.2. Samples: 730030. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:10:04,834][00595] Avg episode reward: [(0, '11.034')]
[2023-02-26 12:10:09,837][00595] Fps is (10 sec: 4094.2, 60 sec: 3959.2, 300 sec: 3915.5). Total num frames: 2940928. Throughput: 0: 972.5. Samples: 735610. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:10:09,838][00595] Avg episode reward: [(0, '12.270')]
[2023-02-26 12:10:09,848][10641] Saving new best policy, reward=12.270!
[2023-02-26 12:10:12,565][10654] Updated weights for policy 0, policy_version 720 (0.0017)
[2023-02-26 12:10:14,833][00595] Fps is (10 sec: 3276.5, 60 sec: 3891.1, 300 sec: 3901.6). Total num frames: 2953216. Throughput: 0: 958.0. Samples: 737882. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:10:14,837][00595] Avg episode reward: [(0, '11.885')]
[2023-02-26 12:10:19,832][00595] Fps is (10 sec: 3688.0, 60 sec: 3959.5, 300 sec: 3901.6). Total num frames: 2977792. Throughput: 0: 998.1. Samples: 744068. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:10:19,840][00595] Avg episode reward: [(0, '12.556')]
[2023-02-26 12:10:19,843][10641] Saving new best policy, reward=12.556!
[2023-02-26 12:10:21,777][10654] Updated weights for policy 0, policy_version 730 (0.0022)
[2023-02-26 12:10:24,832][00595] Fps is (10 sec: 4915.6, 60 sec: 3959.5, 300 sec: 3901.6). Total num frames: 3002368. Throughput: 0: 1017.0. Samples: 751348. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:10:24,839][00595] Avg episode reward: [(0, '12.811')]
[2023-02-26 12:10:24,852][10641] Saving new best policy, reward=12.811!
[2023-02-26 12:10:29,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3959.7, 300 sec: 3915.5). Total num frames: 3018752. Throughput: 0: 991.3. Samples: 753748. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:10:29,837][00595] Avg episode reward: [(0, '13.455')]
[2023-02-26 12:10:29,845][10641] Saving new best policy, reward=13.455!
[2023-02-26 12:10:33,574][10654] Updated weights for policy 0, policy_version 740 (0.0029)
[2023-02-26 12:10:34,833][00595] Fps is (10 sec: 3276.7, 60 sec: 3959.5, 300 sec: 3915.5). Total num frames: 3035136. Throughput: 0: 961.8. Samples: 758268. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:10:34,840][00595] Avg episode reward: [(0, '14.245')]
[2023-02-26 12:10:34,856][10641] Saving new best policy, reward=14.245!
[2023-02-26 12:10:39,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3901.6). Total num frames: 3055616. Throughput: 0: 1002.6. Samples: 764666. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:10:39,840][00595] Avg episode reward: [(0, '15.002')]
[2023-02-26 12:10:39,845][10641] Saving new best policy, reward=15.002!
[2023-02-26 12:10:42,968][10654] Updated weights for policy 0, policy_version 750 (0.0018)
[2023-02-26 12:10:44,833][00595] Fps is (10 sec: 4505.5, 60 sec: 3959.4, 300 sec: 3915.5). Total num frames: 3080192. Throughput: 0: 1008.3. Samples: 768114. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:10:44,840][00595] Avg episode reward: [(0, '15.687')]
[2023-02-26 12:10:44,852][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000752_3080192.pth...
[2023-02-26 12:10:44,983][10641] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000522_2138112.pth
[2023-02-26 12:10:45,004][10641] Saving new best policy, reward=15.687!
[2023-02-26 12:10:49,833][00595] Fps is (10 sec: 3686.3, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 3092480. Throughput: 0: 966.3. Samples: 773512. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:10:49,841][00595] Avg episode reward: [(0, '15.035')]
[2023-02-26 12:10:54,833][00595] Fps is (10 sec: 2867.2, 60 sec: 3891.2, 300 sec: 3901.6). Total num frames: 3108864. Throughput: 0: 937.8. Samples: 777808. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:10:54,839][00595] Avg episode reward: [(0, '14.879')]
[2023-02-26 12:10:55,763][10654] Updated weights for policy 0, policy_version 760 (0.0021)
[2023-02-26 12:10:59,832][00595] Fps is (10 sec: 3686.5, 60 sec: 3822.9, 300 sec: 3887.7). Total num frames: 3129344. Throughput: 0: 951.5. Samples: 780698. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:10:59,835][00595] Avg episode reward: [(0, '14.336')]
[2023-02-26 12:11:04,770][10654] Updated weights for policy 0, policy_version 770 (0.0022)
[2023-02-26 12:11:04,832][00595] Fps is (10 sec: 4505.7, 60 sec: 3891.2, 300 sec: 3887.7). Total num frames: 3153920. Throughput: 0: 965.8. Samples: 787528. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:11:04,835][00595] Avg episode reward: [(0, '13.023')]
[2023-02-26 12:11:09,836][00595] Fps is (10 sec: 3685.1, 60 sec: 3754.7, 300 sec: 3887.7). Total num frames: 3166208. Throughput: 0: 919.0. Samples: 792708. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:11:09,838][00595] Avg episode reward: [(0, '13.704')]
[2023-02-26 12:11:14,832][00595] Fps is (10 sec: 2457.6, 60 sec: 3754.7, 300 sec: 3860.0). Total num frames: 3178496. Throughput: 0: 908.7. Samples: 794640. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:11:14,835][00595] Avg episode reward: [(0, '13.453')]
[2023-02-26 12:11:18,203][10654] Updated weights for policy 0, policy_version 780 (0.0037)
[2023-02-26 12:11:19,832][00595] Fps is (10 sec: 3277.9, 60 sec: 3686.4, 300 sec: 3860.0). Total num frames: 3198976. Throughput: 0: 918.5. Samples: 799602. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:11:19,835][00595] Avg episode reward: [(0, '13.645')]
[2023-02-26 12:11:24,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3686.4, 300 sec: 3873.8). Total num frames: 3223552. Throughput: 0: 920.2. Samples: 806076. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:11:24,840][00595] Avg episode reward: [(0, '14.513')]
[2023-02-26 12:11:28,349][10654] Updated weights for policy 0, policy_version 790 (0.0013)
[2023-02-26 12:11:29,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3860.0). Total num frames: 3235840. Throughput: 0: 903.9. Samples: 808788. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:11:29,836][00595] Avg episode reward: [(0, '14.026')]
[2023-02-26 12:11:34,832][00595] Fps is (10 sec: 2867.2, 60 sec: 3618.1, 300 sec: 3846.1). Total num frames: 3252224. Throughput: 0: 877.3. Samples: 812990. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:11:34,835][00595] Avg episode reward: [(0, '13.914')]
[2023-02-26 12:11:39,833][00595] Fps is (10 sec: 3686.3, 60 sec: 3618.1, 300 sec: 3846.1). Total num frames: 3272704. Throughput: 0: 907.3. Samples: 818636. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:11:39,835][00595] Avg episode reward: [(0, '15.128')]
[2023-02-26 12:11:40,560][10654] Updated weights for policy 0, policy_version 800 (0.0021)
[2023-02-26 12:11:44,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3549.9, 300 sec: 3846.1). Total num frames: 3293184. Throughput: 0: 916.4. Samples: 821934. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:11:44,837][00595] Avg episode reward: [(0, '15.690')]
[2023-02-26 12:11:44,851][10641] Saving new best policy, reward=15.690!
[2023-02-26 12:11:49,832][00595] Fps is (10 sec: 3686.5, 60 sec: 3618.1, 300 sec: 3846.1). Total num frames: 3309568. Throughput: 0: 897.6. Samples: 827922. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:11:49,835][00595] Avg episode reward: [(0, '15.576')]
[2023-02-26 12:11:51,592][10654] Updated weights for policy 0, policy_version 810 (0.0026)
[2023-02-26 12:11:54,835][00595] Fps is (10 sec: 3276.0, 60 sec: 3618.0, 300 sec: 3846.0). Total num frames: 3325952. Throughput: 0: 872.9. Samples: 831986. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:11:54,842][00595] Avg episode reward: [(0, '16.209')]
[2023-02-26 12:11:54,854][10641] Saving new best policy, reward=16.209!
[2023-02-26 12:11:59,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3549.9, 300 sec: 3818.3). Total num frames: 3342336. Throughput: 0: 879.9. Samples: 834234. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:11:59,843][00595] Avg episode reward: [(0, '16.362')]
[2023-02-26 12:11:59,847][10641] Saving new best policy, reward=16.362!
[2023-02-26 12:12:02,584][10654] Updated weights for policy 0, policy_version 820 (0.0022)
[2023-02-26 12:12:04,832][00595] Fps is (10 sec: 4097.0, 60 sec: 3549.9, 300 sec: 3832.2). Total num frames: 3366912. Throughput: 0: 926.1. Samples: 841276. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:12:04,834][00595] Avg episode reward: [(0, '16.702')]
[2023-02-26 12:12:04,851][10641] Saving new best policy, reward=16.702!
[2023-02-26 12:12:09,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3686.6, 300 sec: 3846.1). Total num frames: 3387392. Throughput: 0: 919.7. Samples: 847462. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:12:09,845][00595] Avg episode reward: [(0, '17.133')]
[2023-02-26 12:12:09,851][10641] Saving new best policy, reward=17.133!
[2023-02-26 12:12:13,790][10654] Updated weights for policy 0, policy_version 830 (0.0013)
[2023-02-26 12:12:14,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3832.2). Total num frames: 3399680. Throughput: 0: 905.9. Samples: 849554. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:12:14,842][00595] Avg episode reward: [(0, '17.658')]
[2023-02-26 12:12:14,863][10641] Saving new best policy, reward=17.658!
[2023-02-26 12:12:19,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3818.3). Total num frames: 3420160. Throughput: 0: 921.9. Samples: 854476. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:12:19,836][00595] Avg episode reward: [(0, '18.195')]
[2023-02-26 12:12:19,841][10641] Saving new best policy, reward=18.195!
[2023-02-26 12:12:24,095][10654] Updated weights for policy 0, policy_version 840 (0.0028)
[2023-02-26 12:12:24,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3618.1, 300 sec: 3818.3). Total num frames: 3440640. Throughput: 0: 946.9. Samples: 861248. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:12:24,840][00595] Avg episode reward: [(0, '18.127')]
[2023-02-26 12:12:29,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3832.2). Total num frames: 3461120. Throughput: 0: 946.4. Samples: 864522. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:12:29,840][00595] Avg episode reward: [(0, '17.542')]
[2023-02-26 12:12:34,833][00595] Fps is (10 sec: 3686.0, 60 sec: 3754.6, 300 sec: 3818.3). Total num frames: 3477504. Throughput: 0: 910.7. Samples: 868904. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:12:34,839][00595] Avg episode reward: [(0, '17.655')]
[2023-02-26 12:12:36,210][10654] Updated weights for policy 0, policy_version 850 (0.0021)
[2023-02-26 12:12:39,833][00595] Fps is (10 sec: 3276.7, 60 sec: 3686.4, 300 sec: 3790.5). Total num frames: 3493888. Throughput: 0: 939.2. Samples: 874248. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:12:39,841][00595] Avg episode reward: [(0, '17.812')]
[2023-02-26 12:12:44,832][00595] Fps is (10 sec: 4096.4, 60 sec: 3754.7, 300 sec: 3818.3). Total num frames: 3518464. Throughput: 0: 969.8. Samples: 877876. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:12:44,840][00595] Avg episode reward: [(0, '17.562')]
[2023-02-26 12:12:44,853][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000859_3518464.pth...
[2023-02-26 12:12:44,977][10641] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000637_2609152.pth
[2023-02-26 12:12:45,180][10654] Updated weights for policy 0, policy_version 860 (0.0036)
[2023-02-26 12:12:49,833][00595] Fps is (10 sec: 4505.6, 60 sec: 3822.9, 300 sec: 3832.2). Total num frames: 3538944. Throughput: 0: 962.0. Samples: 884568. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:12:49,838][00595] Avg episode reward: [(0, '17.675')]
[2023-02-26 12:12:54,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3754.8, 300 sec: 3804.4). Total num frames: 3551232. Throughput: 0: 923.7. Samples: 889030. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:12:54,835][00595] Avg episode reward: [(0, '18.503')]
[2023-02-26 12:12:54,862][10641] Saving new best policy, reward=18.503!
[2023-02-26 12:12:57,693][10654] Updated weights for policy 0, policy_version 870 (0.0025)
[2023-02-26 12:12:59,832][00595] Fps is (10 sec: 3276.9, 60 sec: 3822.9, 300 sec: 3790.5). Total num frames: 3571712. Throughput: 0: 923.6. Samples: 891116. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:12:59,842][00595] Avg episode reward: [(0, '18.788')]
[2023-02-26 12:12:59,845][10641] Saving new best policy, reward=18.788!
[2023-02-26 12:13:04,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3804.4). Total num frames: 3592192. Throughput: 0: 958.4. Samples: 897604. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:13:04,836][00595] Avg episode reward: [(0, '18.415')]
[2023-02-26 12:13:06,945][10654] Updated weights for policy 0, policy_version 880 (0.0013)
[2023-02-26 12:13:09,836][00595] Fps is (10 sec: 4094.6, 60 sec: 3754.5, 300 sec: 3818.3). Total num frames: 3612672. Throughput: 0: 944.3. Samples: 903744. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:13:09,838][00595] Avg episode reward: [(0, '19.338')]
[2023-02-26 12:13:09,845][10641] Saving new best policy, reward=19.338!
[2023-02-26 12:13:14,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3790.5). Total num frames: 3624960. Throughput: 0: 919.9. Samples: 905916. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
[2023-02-26 12:13:14,838][00595] Avg episode reward: [(0, '19.153')]
[2023-02-26 12:13:19,595][10654] Updated weights for policy 0, policy_version 890 (0.0016)
[2023-02-26 12:13:19,832][00595] Fps is (10 sec: 3277.9, 60 sec: 3754.7, 300 sec: 3790.5). Total num frames: 3645440. Throughput: 0: 927.8. Samples: 910654. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:13:19,835][00595] Avg episode reward: [(0, '19.322')]
[2023-02-26 12:13:24,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3790.5). Total num frames: 3665920. Throughput: 0: 958.2. Samples: 917366. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:13:24,834][00595] Avg episode reward: [(0, '19.345')]
[2023-02-26 12:13:24,848][10641] Saving new best policy, reward=19.345!
[2023-02-26 12:13:29,427][10654] Updated weights for policy 0, policy_version 900 (0.0013)
[2023-02-26 12:13:29,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3754.7, 300 sec: 3804.4). Total num frames: 3686400. Throughput: 0: 950.8. Samples: 920662. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:13:29,836][00595] Avg episode reward: [(0, '19.669')]
[2023-02-26 12:13:29,841][10641] Saving new best policy, reward=19.669!
[2023-02-26 12:13:34,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3686.5, 300 sec: 3776.7). Total num frames: 3698688. Throughput: 0: 900.7. Samples: 925098. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:13:34,839][00595] Avg episode reward: [(0, '18.411')]
[2023-02-26 12:13:39,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3754.7, 300 sec: 3762.8). Total num frames: 3719168. Throughput: 0: 914.6. Samples: 930186. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:13:39,835][00595] Avg episode reward: [(0, '18.517')]
[2023-02-26 12:13:41,550][10654] Updated weights for policy 0, policy_version 910 (0.0012)
[2023-02-26 12:13:44,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3686.4, 300 sec: 3776.6). Total num frames: 3739648. Throughput: 0: 940.6. Samples: 933442. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:13:44,835][00595] Avg episode reward: [(0, '17.234')]
[2023-02-26 12:13:49,838][00595] Fps is (10 sec: 4093.7, 60 sec: 3686.1, 300 sec: 3790.5). Total num frames: 3760128. Throughput: 0: 931.8. Samples: 939540. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:13:49,846][00595] Avg episode reward: [(0, '18.028')]
[2023-02-26 12:13:52,709][10654] Updated weights for policy 0, policy_version 920 (0.0024)
[2023-02-26 12:13:54,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3686.4, 300 sec: 3762.8). Total num frames: 3772416. Throughput: 0: 891.1. Samples: 943840. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:13:54,834][00595] Avg episode reward: [(0, '18.594')]
[2023-02-26 12:13:59,832][00595] Fps is (10 sec: 2868.8, 60 sec: 3618.1, 300 sec: 3735.0). Total num frames: 3788800. Throughput: 0: 890.2. Samples: 945974. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:13:59,841][00595] Avg episode reward: [(0, '19.715')]
[2023-02-26 12:13:59,846][10641] Saving new best policy, reward=19.715!
[2023-02-26 12:14:04,159][10654] Updated weights for policy 0, policy_version 930 (0.0029)
[2023-02-26 12:14:04,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3618.1, 300 sec: 3748.9). Total num frames: 3809280. Throughput: 0: 924.1. Samples: 952238. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
[2023-02-26 12:14:04,842][00595] Avg episode reward: [(0, '19.771')]
[2023-02-26 12:14:04,858][10641] Saving new best policy, reward=19.771!
[2023-02-26 12:14:09,832][00595] Fps is (10 sec: 4096.0, 60 sec: 3618.3, 300 sec: 3762.8). Total num frames: 3829760. Throughput: 0: 909.2. Samples: 958278. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:14:09,837][00595] Avg episode reward: [(0, '21.821')]
[2023-02-26 12:14:09,839][10641] Saving new best policy, reward=21.821!
[2023-02-26 12:14:14,832][00595] Fps is (10 sec: 3276.8, 60 sec: 3618.1, 300 sec: 3735.0). Total num frames: 3842048. Throughput: 0: 880.6. Samples: 960288. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:14:14,837][00595] Avg episode reward: [(0, '21.413')]
[2023-02-26 12:14:16,628][10654] Updated weights for policy 0, policy_version 940 (0.0026)
[2023-02-26 12:14:19,832][00595] Fps is (10 sec: 2867.2, 60 sec: 3549.9, 300 sec: 3707.2). Total num frames: 3858432. Throughput: 0: 871.8. Samples: 964330. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
[2023-02-26 12:14:19,837][00595] Avg episode reward: [(0, '21.206')]
[2023-02-26 12:14:24,832][00595] Fps is (10 sec: 3686.4, 60 sec: 3549.9, 300 sec: 3721.2). Total num frames: 3878912. Throughput: 0: 905.4. Samples: 970930. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:14:24,835][00595] Avg episode reward: [(0, '21.511')]
[2023-02-26 12:14:26,828][10654] Updated weights for policy 0, policy_version 950 (0.0025)
[2023-02-26 12:14:29,832][00595] Fps is (10 sec: 4505.6, 60 sec: 3618.1, 300 sec: 3748.9). Total num frames: 3903488. Throughput: 0: 906.8. Samples: 974246. Policy #0 lag: (min: 0.0, avg: 0.7, max: 1.0)
[2023-02-26 12:14:29,841][00595] Avg episode reward: [(0, '20.575')]
[2023-02-26 12:14:34,833][00595] Fps is (10 sec: 3686.1, 60 sec: 3618.1, 300 sec: 3721.1). Total num frames: 3915776. Throughput: 0: 879.8. Samples: 979128. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:14:34,838][00595] Avg episode reward: [(0, '21.675')]
[2023-02-26 12:14:39,702][10654] Updated weights for policy 0, policy_version 960 (0.0019)
[2023-02-26 12:14:39,832][00595] Fps is (10 sec: 2867.2, 60 sec: 3549.9, 300 sec: 3693.3). Total num frames: 3932160. Throughput: 0: 878.9. Samples: 983390. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:14:39,835][00595] Avg episode reward: [(0, '21.541')]
[2023-02-26 12:14:44,832][00595] Fps is (10 sec: 3686.7, 60 sec: 3549.9, 300 sec: 3707.2). Total num frames: 3952640. Throughput: 0: 904.4. Samples: 986672. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
[2023-02-26 12:14:44,838][00595] Avg episode reward: [(0, '20.028')]
[2023-02-26 12:14:44,849][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000965_3952640.pth...
[2023-02-26 12:14:44,964][10641] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000752_3080192.pth
[2023-02-26 12:14:48,758][10654] Updated weights for policy 0, policy_version 970 (0.0027)
[2023-02-26 12:14:49,835][00595] Fps is (10 sec: 4094.9, 60 sec: 3550.0, 300 sec: 3721.1). Total num frames: 3973120. Throughput: 0: 916.8. Samples: 993496. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
[2023-02-26 12:14:49,839][00595] Avg episode reward: [(0, '19.995')]
[2023-02-26 12:14:54,834][00595] Fps is (10 sec: 3685.9, 60 sec: 3618.1, 300 sec: 3693.3). Total num frames: 3989504. Throughput: 0: 888.1. Samples: 998246. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
[2023-02-26 12:14:54,838][00595] Avg episode reward: [(0, '19.304')]
[2023-02-26 12:14:59,646][10641] Stopping Batcher_0...
[2023-02-26 12:14:59,648][10641] Loop batcher_evt_loop terminating...
[2023-02-26 12:14:59,649][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-02-26 12:14:59,647][00595] Component Batcher_0 stopped!
[2023-02-26 12:14:59,700][10654] Weights refcount: 2 0
[2023-02-26 12:14:59,703][00595] Component InferenceWorker_p0-w0 stopped!
[2023-02-26 12:14:59,706][10654] Stopping InferenceWorker_p0-w0...
[2023-02-26 12:14:59,708][10654] Loop inference_proc0-0_evt_loop terminating...
[2023-02-26 12:14:59,718][00595] Component RolloutWorker_w0 stopped!
[2023-02-26 12:14:59,718][10656] Stopping RolloutWorker_w0...
[2023-02-26 12:14:59,728][00595] Component RolloutWorker_w1 stopped!
[2023-02-26 12:14:59,730][10657] Stopping RolloutWorker_w1...
[2023-02-26 12:14:59,723][10656] Loop rollout_proc0_evt_loop terminating...
[2023-02-26 12:14:59,742][10657] Loop rollout_proc1_evt_loop terminating...
[2023-02-26 12:14:59,760][00595] Component RolloutWorker_w7 stopped!
[2023-02-26 12:14:59,770][10660] Stopping RolloutWorker_w4...
[2023-02-26 12:14:59,770][00595] Component RolloutWorker_w5 stopped!
[2023-02-26 12:14:59,779][10661] Stopping RolloutWorker_w5...
[2023-02-26 12:14:59,773][00595] Component RolloutWorker_w4 stopped!
[2023-02-26 12:14:59,780][10664] Stopping RolloutWorker_w6...
[2023-02-26 12:14:59,780][00595] Component RolloutWorker_w6 stopped!
[2023-02-26 12:14:59,773][10660] Loop rollout_proc4_evt_loop terminating...
[2023-02-26 12:14:59,786][10664] Loop rollout_proc6_evt_loop terminating...
[2023-02-26 12:14:59,791][10658] Stopping RolloutWorker_w2...
[2023-02-26 12:14:59,791][10658] Loop rollout_proc2_evt_loop terminating...
[2023-02-26 12:14:59,820][10641] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000859_3518464.pth
[2023-02-26 12:14:59,791][00595] Component RolloutWorker_w2 stopped!
[2023-02-26 12:14:59,762][10667] Stopping RolloutWorker_w7...
[2023-02-26 12:14:59,822][10667] Loop rollout_proc7_evt_loop terminating...
[2023-02-26 12:14:59,779][10661] Loop rollout_proc5_evt_loop terminating...
[2023-02-26 12:14:59,836][10659] Stopping RolloutWorker_w3...
[2023-02-26 12:14:59,838][10659] Loop rollout_proc3_evt_loop terminating...
[2023-02-26 12:14:59,837][00595] Component RolloutWorker_w3 stopped!
[2023-02-26 12:14:59,842][10641] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-02-26 12:15:00,023][00595] Component LearnerWorker_p0 stopped!
[2023-02-26 12:15:00,031][00595] Waiting for process learner_proc0 to stop...
[2023-02-26 12:15:00,037][10641] Stopping LearnerWorker_p0...
[2023-02-26 12:15:00,037][10641] Loop learner_proc0_evt_loop terminating...
[2023-02-26 12:15:02,009][00595] Waiting for process inference_proc0-0 to join...
[2023-02-26 12:15:02,419][00595] Waiting for process rollout_proc0 to join...
[2023-02-26 12:15:02,786][00595] Waiting for process rollout_proc1 to join...
[2023-02-26 12:15:02,787][00595] Waiting for process rollout_proc2 to join...
[2023-02-26 12:15:02,808][00595] Waiting for process rollout_proc3 to join...
[2023-02-26 12:15:02,810][00595] Waiting for process rollout_proc4 to join...
[2023-02-26 12:15:02,812][00595] Waiting for process rollout_proc5 to join...
[2023-02-26 12:15:02,817][00595] Waiting for process rollout_proc6 to join...
[2023-02-26 12:15:02,820][00595] Waiting for process rollout_proc7 to join...
[2023-02-26 12:15:02,821][00595] Batcher 0 profile tree view:
batching: 26.6436, releasing_batches: 0.0303
[2023-02-26 12:15:02,823][00595] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
wait_policy_total: 518.4513
update_model: 7.4389
weight_update: 0.0040
one_step: 0.0023
handle_policy_step: 497.7904
deserialize: 14.6227, stack: 2.8471, obs_to_device_normalize: 111.5904, forward: 237.8848, send_messages: 25.4149
prepare_outputs: 80.8594
to_cpu: 50.8510
[2023-02-26 12:15:02,831][00595] Learner 0 profile tree view:
misc: 0.0056, prepare_batch: 15.8218
train: 75.5792
epoch_init: 0.0216, minibatch_init: 0.0059, losses_postprocess: 0.5888, kl_divergence: 0.6031, after_optimizer: 33.1501
calculate_losses: 26.7369
losses_init: 0.0037, forward_head: 1.6081, bptt_initial: 17.8537, tail: 1.0629, advantages_returns: 0.3428, losses: 3.3359
bptt: 2.2787
bptt_forward_core: 2.2111
update: 13.9088
clip: 1.3861
[2023-02-26 12:15:02,832][00595] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.2830, enqueue_policy_requests: 138.9609, env_step: 798.6116, overhead: 19.7832, complete_rollouts: 7.3900
save_policy_outputs: 19.7255
split_output_tensors: 9.4519
[2023-02-26 12:15:02,834][00595] RolloutWorker_w7 profile tree view:
wait_for_trajectories: 0.3592, enqueue_policy_requests: 137.2622, env_step: 800.5373, overhead: 19.3391, complete_rollouts: 6.3508
save_policy_outputs: 19.4753
split_output_tensors: 9.3907
[2023-02-26 12:15:02,836][00595] Loop Runner_EvtLoop terminating...
[2023-02-26 12:15:02,838][00595] Runner profile tree view:
main_loop: 1092.3718
[2023-02-26 12:15:02,839][00595] Collected {0: 4005888}, FPS: 3667.1
[2023-02-26 12:15:02,984][00595] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-02-26 12:15:02,987][00595] Overriding arg 'num_workers' with value 1 passed from command line
[2023-02-26 12:15:02,990][00595] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-02-26 12:15:02,992][00595] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-02-26 12:15:02,994][00595] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-02-26 12:15:02,996][00595] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-02-26 12:15:03,001][00595] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2023-02-26 12:15:03,004][00595] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-02-26 12:15:03,007][00595] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2023-02-26 12:15:03,008][00595] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2023-02-26 12:15:03,010][00595] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-02-26 12:15:03,012][00595] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-02-26 12:15:03,016][00595] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-02-26 12:15:03,018][00595] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-02-26 12:15:03,019][00595] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-02-26 12:15:03,043][00595] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 12:15:03,046][00595] RunningMeanStd input shape: (3, 72, 128)
[2023-02-26 12:15:03,048][00595] RunningMeanStd input shape: (1,)
[2023-02-26 12:15:03,065][00595] ConvEncoder: input_channels=3
[2023-02-26 12:15:03,743][00595] Conv encoder output size: 512
[2023-02-26 12:15:03,746][00595] Policy head output size: 512
[2023-02-26 12:15:06,250][00595] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-02-26 12:15:07,567][00595] Num frames 100...
[2023-02-26 12:15:07,681][00595] Num frames 200...
[2023-02-26 12:15:07,797][00595] Num frames 300...
[2023-02-26 12:15:07,916][00595] Num frames 400...
[2023-02-26 12:15:08,037][00595] Num frames 500...
[2023-02-26 12:15:08,153][00595] Num frames 600...
[2023-02-26 12:15:08,271][00595] Num frames 700...
[2023-02-26 12:15:08,395][00595] Num frames 800...
[2023-02-26 12:15:08,513][00595] Num frames 900...
[2023-02-26 12:15:08,627][00595] Num frames 1000...
[2023-02-26 12:15:08,740][00595] Num frames 1100...
[2023-02-26 12:15:08,821][00595] Avg episode rewards: #0: 23.200, true rewards: #0: 11.200
[2023-02-26 12:15:08,822][00595] Avg episode reward: 23.200, avg true_objective: 11.200
[2023-02-26 12:15:08,917][00595] Num frames 1200...
[2023-02-26 12:15:09,036][00595] Num frames 1300...
[2023-02-26 12:15:09,146][00595] Num frames 1400...
[2023-02-26 12:15:09,267][00595] Num frames 1500...
[2023-02-26 12:15:09,380][00595] Num frames 1600...
[2023-02-26 12:15:09,496][00595] Num frames 1700...
[2023-02-26 12:15:09,629][00595] Num frames 1800...
[2023-02-26 12:15:09,788][00595] Num frames 1900...
[2023-02-26 12:15:09,950][00595] Num frames 2000...
[2023-02-26 12:15:10,119][00595] Num frames 2100...
[2023-02-26 12:15:10,294][00595] Num frames 2200...
[2023-02-26 12:15:10,475][00595] Num frames 2300...
[2023-02-26 12:15:10,639][00595] Num frames 2400...
[2023-02-26 12:15:10,806][00595] Num frames 2500...
[2023-02-26 12:15:10,973][00595] Num frames 2600...
[2023-02-26 12:15:11,072][00595] Avg episode rewards: #0: 29.620, true rewards: #0: 13.120
[2023-02-26 12:15:11,075][00595] Avg episode reward: 29.620, avg true_objective: 13.120
[2023-02-26 12:15:11,199][00595] Num frames 2700...
[2023-02-26 12:15:11,364][00595] Num frames 2800...
[2023-02-26 12:15:11,527][00595] Num frames 2900...
[2023-02-26 12:15:11,692][00595] Num frames 3000...
[2023-02-26 12:15:11,854][00595] Num frames 3100...
[2023-02-26 12:15:12,024][00595] Num frames 3200...
[2023-02-26 12:15:12,192][00595] Num frames 3300...
[2023-02-26 12:15:12,357][00595] Avg episode rewards: #0: 24.200, true rewards: #0: 11.200
[2023-02-26 12:15:12,359][00595] Avg episode reward: 24.200, avg true_objective: 11.200
[2023-02-26 12:15:12,426][00595] Num frames 3400...
[2023-02-26 12:15:12,588][00595] Num frames 3500...
[2023-02-26 12:15:12,746][00595] Num frames 3600...
[2023-02-26 12:15:12,831][00595] Avg episode rewards: #0: 18.790, true rewards: #0: 9.040
[2023-02-26 12:15:12,833][00595] Avg episode reward: 18.790, avg true_objective: 9.040
[2023-02-26 12:15:12,969][00595] Num frames 3700...
[2023-02-26 12:15:13,134][00595] Num frames 3800...
[2023-02-26 12:15:13,282][00595] Num frames 3900...
[2023-02-26 12:15:13,393][00595] Num frames 4000...
[2023-02-26 12:15:13,508][00595] Num frames 4100...
[2023-02-26 12:15:13,632][00595] Num frames 4200...
[2023-02-26 12:15:13,745][00595] Num frames 4300...
[2023-02-26 12:15:13,864][00595] Num frames 4400...
[2023-02-26 12:15:13,984][00595] Num frames 4500...
[2023-02-26 12:15:14,103][00595] Num frames 4600...
[2023-02-26 12:15:14,221][00595] Num frames 4700...
[2023-02-26 12:15:14,338][00595] Num frames 4800...
[2023-02-26 12:15:14,454][00595] Num frames 4900...
[2023-02-26 12:15:14,575][00595] Num frames 5000...
[2023-02-26 12:15:14,695][00595] Num frames 5100...
[2023-02-26 12:15:14,814][00595] Num frames 5200...
[2023-02-26 12:15:14,935][00595] Num frames 5300...
[2023-02-26 12:15:15,059][00595] Num frames 5400...
[2023-02-26 12:15:15,192][00595] Num frames 5500...
[2023-02-26 12:15:15,316][00595] Num frames 5600...
[2023-02-26 12:15:15,433][00595] Num frames 5700...
[2023-02-26 12:15:15,508][00595] Avg episode rewards: #0: 25.832, true rewards: #0: 11.432
[2023-02-26 12:15:15,510][00595] Avg episode reward: 25.832, avg true_objective: 11.432
[2023-02-26 12:15:15,607][00595] Num frames 5800...
[2023-02-26 12:15:15,730][00595] Num frames 5900...
[2023-02-26 12:15:15,848][00595] Num frames 6000...
[2023-02-26 12:15:15,972][00595] Num frames 6100...
[2023-02-26 12:15:16,091][00595] Num frames 6200...
[2023-02-26 12:15:16,204][00595] Num frames 6300...
[2023-02-26 12:15:16,327][00595] Num frames 6400...
[2023-02-26 12:15:16,443][00595] Num frames 6500...
[2023-02-26 12:15:16,561][00595] Num frames 6600...
[2023-02-26 12:15:16,691][00595] Num frames 6700...
[2023-02-26 12:15:16,815][00595] Num frames 6800...
[2023-02-26 12:15:16,945][00595] Num frames 6900...
[2023-02-26 12:15:17,065][00595] Num frames 7000...
[2023-02-26 12:15:17,185][00595] Num frames 7100...
[2023-02-26 12:15:17,318][00595] Num frames 7200...
[2023-02-26 12:15:17,437][00595] Num frames 7300...
[2023-02-26 12:15:17,568][00595] Num frames 7400...
[2023-02-26 12:15:17,700][00595] Num frames 7500...
[2023-02-26 12:15:17,822][00595] Num frames 7600...
[2023-02-26 12:15:17,906][00595] Avg episode rewards: #0: 29.200, true rewards: #0: 12.700
[2023-02-26 12:15:17,908][00595] Avg episode reward: 29.200, avg true_objective: 12.700
[2023-02-26 12:15:18,009][00595] Num frames 7700...
[2023-02-26 12:15:18,131][00595] Num frames 7800...
[2023-02-26 12:15:18,265][00595] Num frames 7900...
[2023-02-26 12:15:18,387][00595] Num frames 8000...
[2023-02-26 12:15:18,513][00595] Num frames 8100...
[2023-02-26 12:15:18,635][00595] Num frames 8200...
[2023-02-26 12:15:18,764][00595] Num frames 8300...
[2023-02-26 12:15:18,892][00595] Avg episode rewards: #0: 27.223, true rewards: #0: 11.937
[2023-02-26 12:15:18,894][00595] Avg episode reward: 27.223, avg true_objective: 11.937
[2023-02-26 12:15:18,953][00595] Num frames 8400...
[2023-02-26 12:15:19,078][00595] Num frames 8500...
[2023-02-26 12:15:19,200][00595] Num frames 8600...
[2023-02-26 12:15:19,329][00595] Num frames 8700...
[2023-02-26 12:15:19,450][00595] Num frames 8800...
[2023-02-26 12:15:19,573][00595] Num frames 8900...
[2023-02-26 12:15:19,669][00595] Avg episode rewards: #0: 25.040, true rewards: #0: 11.165
[2023-02-26 12:15:19,673][00595] Avg episode reward: 25.040, avg true_objective: 11.165
[2023-02-26 12:15:19,772][00595] Num frames 9000...
[2023-02-26 12:15:19,892][00595] Num frames 9100...
[2023-02-26 12:15:20,016][00595] Num frames 9200...
[2023-02-26 12:15:20,134][00595] Num frames 9300...
[2023-02-26 12:15:20,253][00595] Num frames 9400...
[2023-02-26 12:15:20,383][00595] Num frames 9500...
[2023-02-26 12:15:20,503][00595] Num frames 9600...
[2023-02-26 12:15:20,626][00595] Num frames 9700...
[2023-02-26 12:15:20,757][00595] Num frames 9800...
[2023-02-26 12:15:20,848][00595] Avg episode rewards: #0: 24.475, true rewards: #0: 10.920
[2023-02-26 12:15:20,849][00595] Avg episode reward: 24.475, avg true_objective: 10.920
[2023-02-26 12:15:20,942][00595] Num frames 9900...
[2023-02-26 12:15:21,070][00595] Num frames 10000...
[2023-02-26 12:15:21,187][00595] Num frames 10100...
[2023-02-26 12:15:21,316][00595] Num frames 10200...
[2023-02-26 12:15:21,432][00595] Num frames 10300...
[2023-02-26 12:15:21,550][00595] Num frames 10400...
[2023-02-26 12:15:21,690][00595] Avg episode rewards: #0: 23.268, true rewards: #0: 10.468
[2023-02-26 12:15:21,693][00595] Avg episode reward: 23.268, avg true_objective: 10.468
[2023-02-26 12:16:27,312][00595] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
[2023-02-26 12:20:20,559][00595] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
[2023-02-26 12:20:20,562][00595] Overriding arg 'num_workers' with value 1 passed from command line
[2023-02-26 12:20:20,564][00595] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-02-26 12:20:20,566][00595] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-02-26 12:20:20,567][00595] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-02-26 12:20:20,569][00595] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-02-26 12:20:20,572][00595] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2023-02-26 12:20:20,573][00595] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-02-26 12:20:20,574][00595] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2023-02-26 12:20:20,575][00595] Adding new argument 'hf_repository'='mikato/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2023-02-26 12:20:20,577][00595] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-02-26 12:20:20,579][00595] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-02-26 12:20:20,581][00595] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-02-26 12:20:20,582][00595] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-02-26 12:20:20,584][00595] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-02-26 12:20:20,612][00595] RunningMeanStd input shape: (3, 72, 128)
[2023-02-26 12:20:20,613][00595] RunningMeanStd input shape: (1,)
[2023-02-26 12:20:20,627][00595] ConvEncoder: input_channels=3
[2023-02-26 12:20:20,664][00595] Conv encoder output size: 512
[2023-02-26 12:20:20,665][00595] Policy head output size: 512
[2023-02-26 12:20:20,684][00595] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000978_4005888.pth...
[2023-02-26 12:20:21,118][00595] Num frames 100...
[2023-02-26 12:20:21,236][00595] Num frames 200...
[2023-02-26 12:20:21,347][00595] Num frames 300...
[2023-02-26 12:20:21,464][00595] Num frames 400...
[2023-02-26 12:20:21,588][00595] Num frames 500...
[2023-02-26 12:20:21,698][00595] Num frames 600...
[2023-02-26 12:20:21,813][00595] Num frames 700...
[2023-02-26 12:20:21,925][00595] Num frames 800...
[2023-02-26 12:20:22,042][00595] Num frames 900...
[2023-02-26 12:20:22,164][00595] Num frames 1000...
[2023-02-26 12:20:22,283][00595] Num frames 1100...
[2023-02-26 12:20:22,396][00595] Num frames 1200...
[2023-02-26 12:20:22,512][00595] Num frames 1300...
[2023-02-26 12:20:22,632][00595] Num frames 1400...
[2023-02-26 12:20:22,770][00595] Avg episode rewards: #0: 35.720, true rewards: #0: 14.720
[2023-02-26 12:20:22,772][00595] Avg episode reward: 35.720, avg true_objective: 14.720
[2023-02-26 12:20:22,806][00595] Num frames 1500...
[2023-02-26 12:20:22,919][00595] Num frames 1600...
[2023-02-26 12:20:23,031][00595] Num frames 1700...
[2023-02-26 12:20:23,146][00595] Num frames 1800...
[2023-02-26 12:20:23,268][00595] Num frames 1900...
[2023-02-26 12:20:23,377][00595] Num frames 2000...
[2023-02-26 12:20:23,487][00595] Num frames 2100...
[2023-02-26 12:20:23,612][00595] Num frames 2200...
[2023-02-26 12:20:23,725][00595] Num frames 2300...
[2023-02-26 12:20:23,841][00595] Num frames 2400...
[2023-02-26 12:20:23,959][00595] Num frames 2500...
[2023-02-26 12:20:24,082][00595] Avg episode rewards: #0: 30.800, true rewards: #0: 12.800
[2023-02-26 12:20:24,084][00595] Avg episode reward: 30.800, avg true_objective: 12.800
[2023-02-26 12:20:24,131][00595] Num frames 2600...
[2023-02-26 12:20:24,247][00595] Num frames 2700...
[2023-02-26 12:20:24,358][00595] Num frames 2800...
[2023-02-26 12:20:24,471][00595] Num frames 2900...
[2023-02-26 12:20:24,587][00595] Num frames 3000...
[2023-02-26 12:20:24,706][00595] Num frames 3100...
[2023-02-26 12:20:24,817][00595] Num frames 3200...
[2023-02-26 12:20:24,931][00595] Num frames 3300...
[2023-02-26 12:20:25,050][00595] Num frames 3400...
[2023-02-26 12:20:25,161][00595] Num frames 3500...
[2023-02-26 12:20:25,284][00595] Num frames 3600...
[2023-02-26 12:20:25,427][00595] Avg episode rewards: #0: 29.600, true rewards: #0: 12.267
[2023-02-26 12:20:25,429][00595] Avg episode reward: 29.600, avg true_objective: 12.267
[2023-02-26 12:20:25,455][00595] Num frames 3700...
[2023-02-26 12:20:25,570][00595] Num frames 3800...
[2023-02-26 12:20:25,690][00595] Num frames 3900...
[2023-02-26 12:20:25,800][00595] Num frames 4000...
[2023-02-26 12:20:25,924][00595] Num frames 4100...
[2023-02-26 12:20:26,039][00595] Num frames 4200...
[2023-02-26 12:20:26,160][00595] Num frames 4300...
[2023-02-26 12:20:26,282][00595] Num frames 4400...
[2023-02-26 12:20:26,398][00595] Num frames 4500...
[2023-02-26 12:20:26,518][00595] Num frames 4600...
[2023-02-26 12:20:26,632][00595] Num frames 4700...
[2023-02-26 12:20:26,750][00595] Num frames 4800...
[2023-02-26 12:20:26,875][00595] Num frames 4900...
[2023-02-26 12:20:26,986][00595] Num frames 5000...
[2023-02-26 12:20:27,105][00595] Num frames 5100...
[2023-02-26 12:20:27,219][00595] Num frames 5200...
[2023-02-26 12:20:27,332][00595] Num frames 5300...
[2023-02-26 12:20:27,447][00595] Num frames 5400...
[2023-02-26 12:20:27,560][00595] Num frames 5500...
[2023-02-26 12:20:27,683][00595] Num frames 5600...
[2023-02-26 12:20:27,798][00595] Num frames 5700...
[2023-02-26 12:20:27,942][00595] Avg episode rewards: #0: 35.450, true rewards: #0: 14.450
[2023-02-26 12:20:27,944][00595] Avg episode reward: 35.450, avg true_objective: 14.450
[2023-02-26 12:20:27,973][00595] Num frames 5800...
[2023-02-26 12:20:28,100][00595] Num frames 5900...
[2023-02-26 12:20:28,215][00595] Num frames 6000...
[2023-02-26 12:20:28,330][00595] Num frames 6100...
[2023-02-26 12:20:28,443][00595] Num frames 6200...
[2023-02-26 12:20:28,612][00595] Num frames 6300...
[2023-02-26 12:20:28,776][00595] Num frames 6400...
[2023-02-26 12:20:28,945][00595] Num frames 6500...
[2023-02-26 12:20:29,106][00595] Num frames 6600...
[2023-02-26 12:20:29,273][00595] Num frames 6700...
[2023-02-26 12:20:29,427][00595] Num frames 6800...
[2023-02-26 12:20:29,592][00595] Num frames 6900...
[2023-02-26 12:20:29,797][00595] Avg episode rewards: #0: 33.974, true rewards: #0: 13.974
[2023-02-26 12:20:29,800][00595] Avg episode reward: 33.974, avg true_objective: 13.974
[2023-02-26 12:20:29,827][00595] Num frames 7000...
[2023-02-26 12:20:29,989][00595] Num frames 7100...
[2023-02-26 12:20:30,157][00595] Num frames 7200...
[2023-02-26 12:20:30,326][00595] Num frames 7300...
[2023-02-26 12:20:30,455][00595] Avg episode rewards: #0: 29.235, true rewards: #0: 12.235
[2023-02-26 12:20:30,458][00595] Avg episode reward: 29.235, avg true_objective: 12.235
[2023-02-26 12:20:30,557][00595] Num frames 7400...
[2023-02-26 12:20:30,722][00595] Num frames 7500...
[2023-02-26 12:20:30,896][00595] Num frames 7600...
[2023-02-26 12:20:31,063][00595] Num frames 7700...
[2023-02-26 12:20:31,226][00595] Num frames 7800...
[2023-02-26 12:20:31,391][00595] Num frames 7900...
[2023-02-26 12:20:31,475][00595] Avg episode rewards: #0: 26.453, true rewards: #0: 11.310
[2023-02-26 12:20:31,478][00595] Avg episode reward: 26.453, avg true_objective: 11.310
[2023-02-26 12:20:31,613][00595] Num frames 8000...
[2023-02-26 12:20:31,778][00595] Num frames 8100...
[2023-02-26 12:20:31,956][00595] Num frames 8200...
[2023-02-26 12:20:32,097][00595] Num frames 8300...
[2023-02-26 12:20:32,209][00595] Num frames 8400...
[2023-02-26 12:20:32,332][00595] Num frames 8500...
[2023-02-26 12:20:32,443][00595] Num frames 8600...
[2023-02-26 12:20:32,554][00595] Num frames 8700...
[2023-02-26 12:20:32,672][00595] Num frames 8800...
[2023-02-26 12:20:32,785][00595] Num frames 8900...
[2023-02-26 12:20:32,909][00595] Num frames 9000...
[2023-02-26 12:20:33,008][00595] Avg episode rewards: #0: 26.171, true rewards: #0: 11.296
[2023-02-26 12:20:33,011][00595] Avg episode reward: 26.171, avg true_objective: 11.296
[2023-02-26 12:20:33,082][00595] Num frames 9100...
[2023-02-26 12:20:33,196][00595] Num frames 9200...
[2023-02-26 12:20:33,319][00595] Num frames 9300...
[2023-02-26 12:20:33,433][00595] Num frames 9400...
[2023-02-26 12:20:33,543][00595] Num frames 9500...
[2023-02-26 12:20:33,652][00595] Num frames 9600...
[2023-02-26 12:20:33,771][00595] Num frames 9700...
[2023-02-26 12:20:33,889][00595] Num frames 9800...
[2023-02-26 12:20:34,011][00595] Num frames 9900...
[2023-02-26 12:20:34,126][00595] Num frames 10000...
[2023-02-26 12:20:34,240][00595] Num frames 10100...
[2023-02-26 12:20:34,360][00595] Num frames 10200...
[2023-02-26 12:20:34,464][00595] Avg episode rewards: #0: 26.046, true rewards: #0: 11.379
[2023-02-26 12:20:34,465][00595] Avg episode reward: 26.046, avg true_objective: 11.379
[2023-02-26 12:20:34,533][00595] Num frames 10300...
[2023-02-26 12:20:34,644][00595] Num frames 10400...
[2023-02-26 12:20:34,767][00595] Num frames 10500...
[2023-02-26 12:20:34,889][00595] Num frames 10600...
[2023-02-26 12:20:35,012][00595] Num frames 10700...
[2023-02-26 12:20:35,125][00595] Num frames 10800...
[2023-02-26 12:20:35,238][00595] Num frames 10900...
[2023-02-26 12:20:35,313][00595] Avg episode rewards: #0: 24.816, true rewards: #0: 10.916
[2023-02-26 12:20:35,315][00595] Avg episode reward: 24.816, avg true_objective: 10.916
[2023-02-26 12:21:40,672][00595] Replay video saved to /content/train_dir/default_experiment/replay.mp4!