File size: 1,411 Bytes
bbefeb7
 
 
 
 
 
 
 
 
 
 
 
 
d2de3cf
 
bbefeb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from typing import Any, Dict, List
import os
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

PRETRAINED_MODEL_NAME = "facebook/bart-large"
ADAPTER_MODEL_NAME = "jammygrams/bart-qa"
ADAPTER_NAME = "narrativeqa"

class EndpointHandler():
    def __init__(
        self,
        path: str,
    ):
        self.tokenizer = AutoTokenizer.from_pretrained(path)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(path)
        self.model.set_active_adapters(ADAPTER_NAME)

    def __call__(self, data: Dict[str, Any]) -> str:
        """
        data args:
            inputs (:obj: `str` | `PIL.Image` | `np.array`)
            kwargs
        Return:
            output :obj:`list` | `dict`: will be serialized and returned
        """
        inputs = data.pop("inputs", data)
        # test_sample = self.tokenizer([user_input], truncation=True, max_length=1024, return_tensors='pt')
        tokenized_input = self.tokenizer([inputs], return_tensors="pt")
        prediction = self.model.generate(
            tokenized_input.input_ids,
            num_beams=5,
            return_dict_in_generate=True,
            output_scores=True,
            max_length=50,
        )
        output = self.tokenizer.decode(
            prediction["sequences"][0], # single prediction
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True,
        )

        return [output]