janimo commited on
Commit
bdaba18
1 Parent(s): 27e3fb8

double batch, epochs, steps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 243.01 +/- 28.54
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 278.57 +/- 21.94
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb606970a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb60697130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb606971c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb60697250>", "_build": "<function ActorCriticPolicy._build at 0x7efb606972e0>", "forward": "<function ActorCriticPolicy.forward at 0x7efb60697370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efb60697400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb60697490>", "_predict": "<function ActorCriticPolicy._predict at 0x7efb60697520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb606975b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb60697640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb606976d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efb6b39c600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688244414374638066, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJorvjxxPTC56Ix6OrZ6gTZshnS7dvuXuQAAgD8AAIA/AKrAPfYsdrq6Cma7h7iQOGOuYrt34745AACAPwAAgD8AkEQ9jzJiutqBWbhcm1Gz6XcnO6O2fzcAAIA/AACAPzOjKD2uxZ+6drqTu66HsTgiu0e6PhwHOgAAgD8AAIA/IMQzvjQNNT8D/wo9pjMJvpBoj70UEcw9AAAAAAAAAADNMjg9cT1ZOLoRB7wm8ky23+19u0/TujUAAIA/AACAP7OlDz6XQAs/hebhvW5LUr6ZnVK9Jrw5PQAAAAAAAAAAmmrpvK7FtLob6B86zQA4NKaEBjpTgja5AACAPwAAgD+aibM7SLuGuqqjmjogtZA1y5QxujYntLkAAIA/AACAPwCsMLwp+Aa6ETdCvKvBGLVDDDA5CmGFNAAAgD8AAIA/zS7LPFLws7kuqla6hFfgNMEeuzrbLHw5AACAPwAAgD+zdym9w6lSuiC8mTpcAKk1k1/TuYMcrrkAAIA/AACAPwAU+rt7PqG6mPUpu7GLrrbCYFK6uL9DOgAAgD8AAIA/xiw3PpB0lj5QvF871K6EvrK3YD0onGk9AAAAAAAAAAAz5Qi9eO2sPdvLlT2XLDC+mtFGvKh/xbsAAAAAAAAAAAAAprl7EIq6FOw5ujOiKbQEqA+7G7ZVOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGNE0CaJAMWMAWyUTegDjAF0lEdAligoJJGvwHV9lChoBkdAYyaeIVM232gHTegDaAhHQJYtIdLg4wR1fZQoaAZHQGNFuC5EtuloB03oA2gIR0CWMEQSi/O/dX2UKGgGR0BhoBjOLR8daAdN6ANoCEdAljLUXP7emHV9lChoBkdAXYqntOVPe2gHTegDaAhHQJY2weXAuZl1fZQoaAZHQGS5lRxcVxloB03oA2gIR0CWNsUD+zdDdX2UKGgGR0BhLYtrbg0kaAdN6ANoCEdAljqE8/2TPnV9lChoBkdAZP+OU+s5n2gHTegDaAhHQJY8wmmce8x1fZQoaAZHQGVJtvwVj7RoB03oA2gIR0CWP3+85CF9dX2UKGgGR0BgYgIOYplSaAdN6ANoCEdAlkBHMpw0f3V9lChoBkdAYF/8JD3M6mgHTegDaAhHQJZHQnkT6BR1fZQoaAZHQF1eHwgDA8BoB03oA2gIR0CWSYxZMcp9dX2UKGgGR0Bj5wgow22oaAdN6ANoCEdAllEyWiUPhHV9lChoBkdAZA//7zkIX2gHTegDaAhHQJZR8OVgQYl1fZQoaAZHQEd6ShakhzNoB00PAWgIR0CWVvUuL740dX2UKGgGR0BeoK+BYmsvaAdN6ANoCEdAllxLQ5WBBnV9lChoBkdAYkd2Xb/OuGgHTegDaAhHQJZfjiXIEKV1fZQoaAZHQGJAXNs3yZtoB03oA2gIR0CWgCgF5fMOdX2UKGgGR0Bj3cLYwqRVaAdN6ANoCEdAloUVW8yvcXV9lChoBkdAYlPJ6IFeOWgHTegDaAhHQJaIVI/Z/Td1fZQoaAZHQGL5PDP4VRFoB03oA2gIR0CWiqFB6a9cdX2UKGgGR0BgQnxMFlkIaAdN6ANoCEdAlo27N8ma6XV9lChoBkdAY5LhVlwtKGgHTegDaAhHQJaNvaK1og51fZQoaAZHQGBkK508vEloB03oA2gIR0CWkHl5GBnSdX2UKGgGR0Bh14fCAMDwaAdN6ANoCEdAlpIZgXuVo3V9lChoBkdAXhTBk7Omi2gHTegDaAhHQJaUD84xUNt1fZQoaAZHQGMVcFQl8gJoB03oA2gIR0CWlJ/I8yN5dX2UKGgGR0BdzfUz9CNTaAdN6ANoCEdAlpzZB1LamHV9lChoBkdARcmhVU+9rWgHS+ZoCEdAlp7WLcbiqHV9lChoBkdAZB+hmGucMGgHTegDaAhHQJalJCE6DGt1fZQoaAZHQF5iVvddmg9oB03oA2gIR0CWpgV7x/d7dX2UKGgGR0Bj+r5bhWHUaAdN6ANoCEdAlq1lrdnCf3V9lChoBkdAYkK3HaN+9mgHTegDaAhHQJa1H4gzP8h1fZQoaAZHQGODSvTw2EVoB03oA2gIR0CWuXDlHSWrdX2UKGgGR0BfyhXjlxOtaAdN6ANoCEdAltVOT7l7t3V9lChoBkdAWTcYQ8OkL2gHTegDaAhHQJbaOh24d6t1fZQoaAZHQGFdgckt29toB03oA2gIR0CW3VIrvsqsdX2UKGgGR0Bgz/BSDRMOaAdN6ANoCEdAlt+dV7x/eHV9lChoBkdAYcGq0+kgwGgHTegDaAhHQJbjMDGLk0d1fZQoaAZHQGCeAR02caxoB03oA2gIR0CW4zQmeDnOdX2UKGgGR0Bgzh3iaRZEaAdN6ANoCEdAlubt/WlMy3V9lChoBkdAWZlspG4I8mgHTegDaAhHQJbsTytmthd1fZQoaAZHQGHacQI2OyVoB03oA2gIR0CW7SSG8EmqdX2UKGgGR0BgTh9G7SRbaAdN6ANoCEdAlvhkE1VHWnV9lChoBkdAYTxHxSYPXmgHTegDaAhHQJb6pAbADaJ1fZQoaAZHQF8kGYKIBR1oB03oA2gIR0CXAY2FFlTWdX2UKGgGR0BjcGUW2w3YaAdN6ANoCEdAlwJ9znzQNXV9lChoBkdAZF37F85S32gHTegDaAhHQJcJRAIIF/x1fZQoaAZHQFnkrXlKbrloB03oA2gIR0CXD8wnYxtYdX2UKGgGR0Blz1YQrc0taAdN6ANoCEdAlxO+doWYW3V9lChoBkdAKq0S7GvOhWgHTQkBaAhHQJcWL212JSB1fZQoaAZHQGKx5U96kZdoB03oA2gIR0CXNoWKMvRJdX2UKGgGR0BXfdbTtsvaaAdN6ANoCEdAlzwomois4nV9lChoBkdAYXrASnLq2WgHTegDaAhHQJc/qL876pJ1fZQoaAZHQFoTLwWnCO5oB03oA2gIR0CXQjrzoUzsdX2UKGgGR0BbfRkVeruIaAdN6ANoCEdAl0V9diUgS3V9lChoBkdAYn5dadMCcWgHTegDaAhHQJdFfvF3pwF1fZQoaAZHQGGslLFn7HhoB03oA2gIR0CXSIvUSZjQdX2UKGgGR0BfIK86FM7EaAdN6ANoCEdAl0xvYWcjJXV9lChoBkdAX+7pwCKaX2gHTegDaAhHQJdNBhvze411fZQoaAZHQGWGuLaVUuNoB03oA2gIR0CXVfZezD4ydX2UKGgGR0BjyC0Sh8IBaAdN6ANoCEdAl1jY1cdHUnV9lChoBkdAZGYtBfKISGgHTegDaAhHQJdjGfI0ZWJ1fZQoaAZHQE/CBkqc3ERoB00xAWgIR0CXZC0dBBzFdX2UKGgGR0BiwxTGYKIBaAdN6ANoCEdAl2oIuoP07XV9lChoBkdAY8vHCoCMgmgHTegDaAhHQJdvtZs9B8h1fZQoaAZHQGX4jrAxi5NoB03oA2gIR0CXcx6reZXudX2UKGgGR0BhgXQ2MsH0aAdN6ANoCEdAl3UsFyJbdXV9lChoBkdAX0BzV+Zw42gHTegDaAhHQJeOrP0I1Lt1fZQoaAZHQGSDX3QD3dtoB03oA2gIR0CXlQxXGOuJdX2UKGgGR0BjKQXO4XoDaAdN6ANoCEdAl5lIfCAMD3V9lChoBkdAYIWdcSoOx2gHTegDaAhHQJeci3pfQa91fZQoaAZHQGVWOeSSvDBoB03oA2gIR0CXoMbyYoiLdX2UKGgGR0BgnlZ9uxbCaAdN6ANoCEdAl6DJtm+TNnV9lChoBkdAYOCdat9x62gHTegDaAhHQJej6kXUH6d1fZQoaAZHQFmD1EE1VHZoB03oA2gIR0CXp+5QxesxdX2UKGgGR0Bex+p4rz5HaAdN6ANoCEdAl7KVxOtW/HV9lChoBkdAYs1Ux20Re2gHTegDaAhHQJe07yQPqcF1fZQoaAZHQGUxZGax5cFoB03oA2gIR0CXvPvG6wt8dX2UKGgGR0BgPKIWP91maAdN6ANoCEdAl73PYFqzq3V9lChoBkdAY/Gox59mYmgHTegDaAhHQJfDUJUo8ZF1fZQoaAZHQGBZKebutwJoB03oA2gIR0CXyVDSPU8WdX2UKGgGR0BhIxqVQhwEaAdN6ANoCEdAl84L5IpYtHV9lChoBkdAXGYIOYplSWgHTegDaAhHQJfQxhoduHh1fZQoaAZHQGByhQ3xWktoB03oA2gIR0CX7bij+JgtdX2UKGgGR0BhC6T+vQnhaAdN6ANoCEdAl/KxuwX67HV9lChoBkdAYWD54W1twmgHTegDaAhHQJf2DDVH4Gl1fZQoaAZHQGMTzot+TeRoB03oA2gIR0CX+JuPV/c4dX2UKGgGR0BiUesxO+IuaAdN6ANoCEdAl/uYcNpdr3V9lChoBkdAZdSJJoTPB2gHTegDaAhHQJf7mSntOVR1fZQoaAZHQF2kKzAvcrRoB03oA2gIR0CX/oyMkyDadX2UKGgGR0Bh10FY+0PZaAdN6ANoCEdAmAJgT7EYO3V9lChoBkdAYxVs7+1jRWgHTegDaAhHQJgQbqNZNfx1fZQoaAZHQGHleuvECNloB03oA2gIR0CYE45v99+gdX2UKGgGR0BkCM2eg+QmaAdN6ANoCEdAmBtrPt2LYXV9lChoBkdAYoUwV0tAcGgHTegDaAhHQJgcFU6xPft1fZQoaAZHQGMhkQoTfzloB03oA2gIR0CYIFmkWRA9dX2UKGgGR0Bi05nxri2laAdN6ANoCEdAmCVD0cwQDnV9lChoBkdAYHwgYgq3E2gHTegDaAhHQJgoLuc+aBt1fZQoaAZHQGGZJ2t+1BtoB03oA2gIR0CYKe6bONYKdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb606970a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb60697130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb606971c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb60697250>", "_build": "<function ActorCriticPolicy._build at 0x7efb606972e0>", "forward": "<function ActorCriticPolicy.forward at 0x7efb60697370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efb60697400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb60697490>", "_predict": "<function ActorCriticPolicy._predict at 0x7efb60697520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb606975b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb60697640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb606976d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efb6b39c600>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688248078678643801, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2sE7offem5yhKJuAZpU7Mh18Y6kkGdNwAAgD8AAIA/mnciPZn8sj9VoKk+B549vi++Fj3Pzy4+AAAAAAAAAAAauAC96kKuPy3x/r7Nk92+0bu1OzPYtr0AAAAAAAAAADOzODr2zD+6UjinOt6YlDUgyUa7IQLGuQAAgD8AAIA/zRNQvVJIqrmLXUQ2DGKJMU2amjsLwmi1AACAPwAAgD9mu5089vwJulOJh7t+SlQ2yxHIu2BanzoAAIA/AACAPwB8y7yuR8C4sOo5uoDf6DTsUMM7W7hbOQAAgD8AAIA/ptXnvY9mMbq7pTs7pxtrNzR51rr3hg+6AACAPwAAAAAAuLK79iAuuvMnfDl3vwI0jhkZu1/WlLgAAIA/AACAPzNpRrz27FK6sBLSut4LWLSG+jY69ujzOQAAgD8AAIA/zboVPI9+N7qsMzg4HEhUM09rWjtItlW3AACAPwAAgD9mBsU7ulNIPiPnaDw0E5W+YmXvO/kbCb0AAAAAAAAAAABsr7y4VoO5AqHYOr7RDLQpqVU7dtd1swAAgD8AAIA/ALo1vbT4pLyOpni8c8isOhlECT6Y+N49AACAPwAAgD/NJqs8uNaEufiddLnmuQ+z6V/Iu6zpjzgAAIA/AACAP4COZb3hVJO6HclPNPZ5KjCjiaG6/iaQswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGV5+wkgOjKMAWyUTegDjAF0lEdAsy8YZDRc/3V9lChoBkdAb0EQ3gk1M2gHTTUCaAhHQLMyWE/jbSJ1fZQoaAZHQGWAN2cJ+lVoB03oA2gIR0CzM3ImTkhidX2UKGgGR0BosL6ciGFjaAdN6ANoCEdAszPIdzXBg3V9lChoBkdAZbIlrM1TBWgHTegDaAhHQLM0QzxwyZd1fZQoaAZHQGYyOPNmlIpoB03oA2gIR0CzNOm6bvw3dX2UKGgGR0BqokPBi1AraAdN6ANoCEdAszWzSDyvtHV9lChoBkdAY6vGsmv4d2gHTegDaAhHQLM2CHObAk91fZQoaAZHQGNyeZof0VdoB03oA2gIR0CzNmGyLQ5WdX2UKGgGR0BqDcKRdQfqaAdN6ANoCEdAszaaObRWtHV9lChoBkdAYpBHuqm0mmgHTegDaAhHQLM27peeFtd1fZQoaAZHQGTKyqU/wAloB03oA2gIR0CzN5zQNTcZdX2UKGgGR0AWsjIJZ4fPaAdLk2gIR0CzOCug13t8dX2UKGgGR0BlmGXVsk6caAdN6ANoCEdAsziMUi6g/XV9lChoBkdAZWLndO6/ZmgHTegDaAhHQLM42xWT5ft1fZQoaAZHQGQNKNAC4jNoB03oA2gIR0CzOktke6qbdX2UKGgGR0BoekIiTt9haAdN6ANoCEdAszsqlbeMynV9lChoBkdAaKcCtihFmWgHTegDaAhHQLM8R1klNUR1fZQoaAZHQHLIW2oegctoB02cAmgIR0CzPwzv3JxOdX2UKGgGR0BlfNBjWkJsaAdN6ANoCEdAsz9DiFTNuHV9lChoBkdAZiKxlg+hXmgHTegDaAhHQLNAWlfJFLF1fZQoaAZHQGLym2LHdXVoB03oA2gIR0CzScsxGlQ/dX2UKGgGR0BjeVmthd+oaAdN6ANoCEdAs0pGe8PFvXV9lChoBkdAZhWfwqiGnGgHTegDaAhHQLNK+hz/6wd1fZQoaAZHQGY/QrUb1h9oB03oA2gIR0CzS8Sgbp/xdX2UKGgGR0BYcDgQ6IWQaAdLm2gIR0CzTAPZM+NcdX2UKGgGR0BhRXViF0xNaAdN6ANoCEdAs0wbCrLhaXV9lChoBkdAYqhjlPrOaGgHTegDaAhHQLNNaChvitJ1fZQoaAZHQGSqw1zhgmZoB03oA2gIR0CzToR3eN1hdX2UKGgGR0Bk/FhAnlXBaAdN6ANoCEdAs09rX2/SIHV9lChoBkdAZZ5Qu27Wd2gHTegDaAhHQLNQBhddE9d1fZQoaAZHQGeG8jqv/zdoB03oA2gIR0CzUIDJp35fdX2UKGgGR0BmqZE+gUUPaAdN6ANoCEdAs1IbR/mT1XV9lChoBkdAYT6Ne+mFamgHTegDaAhHQLNTAeBg/kh1fZQoaAZHQGgTlz+3pfRoB03oA2gIR0CzVCGr4nF6dX2UKGgGR0BwCoGKQ7tBaAdNFgJoCEdAs1Q1EE1VHXV9lChoBkdAYaD5LytmtmgHTegDaAhHQLNWivc8DCB1fZQoaAZHQGm2KwY+B6NoB03oA2gIR0CzVrYYBNmEdX2UKGgGR0BkyvXGwRoRaAdN6ANoCEdAs1eU32mHg3V9lChoBkdAZPmk8A7xNWgHTegDaAhHQLNX6zxPO6d1fZQoaAZHQGcCcHv+fiBoB03oA2gIR0CzWU0FfReDdX2UKGgGR0BkLBKSPluFaAdN6ANoCEdAs1pEAYHgP3V9lChoBkdAZvyI55qubWgHTegDaAhHQLNajE5yU9p1fZQoaAZHQGLmxtHhCMRoB03oA2gIR0CzXB7QHAymdX2UKGgGR0BwvRRWLgn/aAdNrwNoCEdAs1xKattALXV9lChoBkdAZ6+wL3K0U2gHTegDaAhHQLNeP4D9wWF1fZQoaAZHQGW2wD/2kBVoB03oA2gIR0CzXtv7rLQpdX2UKGgGR0BonALiMo+faAdN6ANoCEdAs19aU5dWyXV9lChoBkdAcgb7P6be/GgHTZoDaAhHQLNgz3PAwf11fZQoaAZHQGj4RSP2f05oB03oA2gIR0CzYO85S3spdX2UKGgGR0BgfDbnHNoraAdN6ANoCEdAs2LniuMdcXV9lChoBkdAYSatoSL612gHTegDaAhHQLNi+08eS0V1fZQoaAZHQGXO6KtPpINoB03oA2gIR0CzZUrKaG5+dX2UKGgGR0BnqAKSgXdkaAdN6ANoCEdAs2V1EkSmInV9lChoBkdAZ44xGDtgKGgHTegDaAhHQLNmP3IdU851fZQoaAZHQHG8WsNlRP5oB00RA2gIR0CzZlFZTyavdX2UKGgGR0BkLE9nscABaAdN6ANoCEdAs2aFN0vGqHV9lChoBkdAcF0qABkqc2gHTVQBaAhHQLNxXuTibUh1fZQoaAZHQGMKRIJ7b+NoB03oA2gIR0CzcbIrSVnmdX2UKGgGR0BwKbQJHAh0aAdNUANoCEdAs3IR8UmD2HV9lChoBkdAZUvTSb6P82gHTegDaAhHQLNyd8BdUsF1fZQoaAZHQHGL/apPykNoB00VAWgIR0CzcqpKvmozdX2UKGgGR0Bw3r6k690zaAdNzAJoCEdAs3OlH4Glh3V9lChoBkdAYfhhUipvP2gHTegDaAhHQLNzvNRm9QJ1fZQoaAZHQHB0O9eyAx1oB02hAWgIR0Czc/2CROk+dX2UKGgGR0BIKz37DVH4aAdLy2gIR0CzdCzVQQ+VdX2UKGgGR0BmI1O9FnZkaAdN6ANoCEdAs3Tf/Khcq3V9lChoBkdAYYh3EAHVw2gHTegDaAhHQLN1OYdhiLF1fZQoaAZHQGf5EXk5p8FoB03oA2gIR0CzdYKnBLwndX2UKGgGR0BBbADaGpMpaAdLrmgIR0CzddnBLwnZdX2UKGgGR0BwSg33pOeraAdNSwJoCEdAs3arOKO1fHV9lChoBkdAZRFicXm/32gHTegDaAhHQLN20njQzDZ1fZQoaAZHQG5vibtqpLpoB00rAmgIR0Czd03IIWxhdX2UKGgGR0BvrU5Ke05VaAdN2QFoCEdAs3eyjnFHa3V9lChoBkdAY4CS6DoQnWgHTegDaAhHQLN4oBp5/sp1fZQoaAZHQG3Llgc94eNoB00oA2gIR0CzeUqXWvr4dX2UKGgGR0BzhOhufmLcaAdNDgFoCEdAs3pPbj94vHV9lChoBkdAcRm0JWvKU2gHTTkDaAhHQLN7iX+VC5V1fZQoaAZHQGgWOymhufpoB03oA2gIR0CzfLsRlHz6dX2UKGgGR0BzFQyIpH7QaAdNowJoCEdAs34TTx5LRXV9lChoBkdAYsTdj5Kvm2gHTegDaAhHQLN+yIacZtN1fZQoaAZHQGmVz4L1EmZoB03oA2gIR0CzgBGhAWzodX2UKGgGR0BkWGI2wV0taAdN6ANoCEdAs4AqAYpDu3V9lChoBkdAZ3vlwtJ4B2gHTegDaAhHQLOAl+NLlFN1fZQoaAZHQHKj2CuloDhoB019A2gIR0CzgRh9XtBwdX2UKGgGR0Bj/IecQRPHaAdN6ANoCEdAs4FALQXyiHV9lChoBkdAa4ceqaPS2GgHTegDaAhHQLOB3OafBep1fZQoaAZHQGX3N83Mpw1oB03oA2gIR0CzgvXUUfxMdX2UKGgGR0ByJ/4/NZ/1aAdNaANoCEdAs4NmKP4mC3V9lChoBkdAZeixL0z0pWgHTegDaAhHQLODlUD+zdF1fZQoaAZHQG7s/Mnqmj1oB02AAmgIR0Czg7Le67NCdX2UKGgGR0Bj24Cr92ovaAdN6ANoCEdAs4P739JjD3V9lChoBkdAcfTjnV5KOGgHTaoBaAhHQLOFCYaYNRZ1fZQoaAZHQGAscg6ltTFoB03oA2gIR0CzhT3MY/FBdX2UKGgGR0BmBGS0Sh8IaAdN6ANoCEdAs4YGkHlfZ3V9lChoBkdAb3eAbyYoiWgHTU0CaAhHQLOGbCVrylN1fZQoaAZHQHFGulGgBcRoB01mAWgIR0Czhut0V8CxdX2UKGgGR0BlGfwEyLydaAdN6ANoCEdAs4bvJeVs13V9lChoBkdAb7exbjcVQGgHTTUBaAhHQLOJabF0gbJ1fZQoaAZHQE0UUA1ejVRoB0uZaAhHQLOJgxO+IuZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQxooOv9KFaGO8Q16rFSu/AIwDaW5jlIoRz/cMvwhmIdXh4C5XXXeh0gB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKx67XY3VidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-001.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34f88046a877630bbd0568e10a8869c6e07a5ea01a0078b9bc11c0033f727391
3
+ size 146994
ppo-LunarLander-v2-001/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-001/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7efb606970a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efb60697130>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efb606971c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efb60697250>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7efb606972e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7efb60697370>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efb60697400>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efb60697490>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7efb60697520>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efb606975b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efb60697640>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efb606976d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7efb6b39c600>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1688248078678643801,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2sE7offem5yhKJuAZpU7Mh18Y6kkGdNwAAgD8AAIA/mnciPZn8sj9VoKk+B549vi++Fj3Pzy4+AAAAAAAAAAAauAC96kKuPy3x/r7Nk92+0bu1OzPYtr0AAAAAAAAAADOzODr2zD+6UjinOt6YlDUgyUa7IQLGuQAAgD8AAIA/zRNQvVJIqrmLXUQ2DGKJMU2amjsLwmi1AACAPwAAgD9mu5089vwJulOJh7t+SlQ2yxHIu2BanzoAAIA/AACAPwB8y7yuR8C4sOo5uoDf6DTsUMM7W7hbOQAAgD8AAIA/ptXnvY9mMbq7pTs7pxtrNzR51rr3hg+6AACAPwAAAAAAuLK79iAuuvMnfDl3vwI0jhkZu1/WlLgAAIA/AACAPzNpRrz27FK6sBLSut4LWLSG+jY69ujzOQAAgD8AAIA/zboVPI9+N7qsMzg4HEhUM09rWjtItlW3AACAPwAAgD9mBsU7ulNIPiPnaDw0E5W+YmXvO/kbCb0AAAAAAAAAAABsr7y4VoO5AqHYOr7RDLQpqVU7dtd1swAAgD8AAIA/ALo1vbT4pLyOpni8c8isOhlECT6Y+N49AACAPwAAgD/NJqs8uNaEufiddLnmuQ+z6V/Iu6zpjzgAAIA/AACAP4COZb3hVJO6HclPNPZ5KjCjiaG6/iaQswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGV5+wkgOjKMAWyUTegDjAF0lEdAsy8YZDRc/3V9lChoBkdAb0EQ3gk1M2gHTTUCaAhHQLMyWE/jbSJ1fZQoaAZHQGWAN2cJ+lVoB03oA2gIR0CzM3ImTkhidX2UKGgGR0BosL6ciGFjaAdN6ANoCEdAszPIdzXBg3V9lChoBkdAZbIlrM1TBWgHTegDaAhHQLM0QzxwyZd1fZQoaAZHQGYyOPNmlIpoB03oA2gIR0CzNOm6bvw3dX2UKGgGR0BqokPBi1AraAdN6ANoCEdAszWzSDyvtHV9lChoBkdAY6vGsmv4d2gHTegDaAhHQLM2CHObAk91fZQoaAZHQGNyeZof0VdoB03oA2gIR0CzNmGyLQ5WdX2UKGgGR0BqDcKRdQfqaAdN6ANoCEdAszaaObRWtHV9lChoBkdAYpBHuqm0mmgHTegDaAhHQLM27peeFtd1fZQoaAZHQGTKyqU/wAloB03oA2gIR0CzN5zQNTcZdX2UKGgGR0AWsjIJZ4fPaAdLk2gIR0CzOCug13t8dX2UKGgGR0BlmGXVsk6caAdN6ANoCEdAsziMUi6g/XV9lChoBkdAZWLndO6/ZmgHTegDaAhHQLM42xWT5ft1fZQoaAZHQGQNKNAC4jNoB03oA2gIR0CzOktke6qbdX2UKGgGR0BoekIiTt9haAdN6ANoCEdAszsqlbeMynV9lChoBkdAaKcCtihFmWgHTegDaAhHQLM8R1klNUR1fZQoaAZHQHLIW2oegctoB02cAmgIR0CzPwzv3JxOdX2UKGgGR0BlfNBjWkJsaAdN6ANoCEdAsz9DiFTNuHV9lChoBkdAZiKxlg+hXmgHTegDaAhHQLNAWlfJFLF1fZQoaAZHQGLym2LHdXVoB03oA2gIR0CzScsxGlQ/dX2UKGgGR0BjeVmthd+oaAdN6ANoCEdAs0pGe8PFvXV9lChoBkdAZhWfwqiGnGgHTegDaAhHQLNK+hz/6wd1fZQoaAZHQGY/QrUb1h9oB03oA2gIR0CzS8Sgbp/xdX2UKGgGR0BYcDgQ6IWQaAdLm2gIR0CzTAPZM+NcdX2UKGgGR0BhRXViF0xNaAdN6ANoCEdAs0wbCrLhaXV9lChoBkdAYqhjlPrOaGgHTegDaAhHQLNNaChvitJ1fZQoaAZHQGSqw1zhgmZoB03oA2gIR0CzToR3eN1hdX2UKGgGR0Bk/FhAnlXBaAdN6ANoCEdAs09rX2/SIHV9lChoBkdAZZ5Qu27Wd2gHTegDaAhHQLNQBhddE9d1fZQoaAZHQGeG8jqv/zdoB03oA2gIR0CzUIDJp35fdX2UKGgGR0BmqZE+gUUPaAdN6ANoCEdAs1IbR/mT1XV9lChoBkdAYT6Ne+mFamgHTegDaAhHQLNTAeBg/kh1fZQoaAZHQGgTlz+3pfRoB03oA2gIR0CzVCGr4nF6dX2UKGgGR0BwCoGKQ7tBaAdNFgJoCEdAs1Q1EE1VHXV9lChoBkdAYaD5LytmtmgHTegDaAhHQLNWivc8DCB1fZQoaAZHQGm2KwY+B6NoB03oA2gIR0CzVrYYBNmEdX2UKGgGR0BkyvXGwRoRaAdN6ANoCEdAs1eU32mHg3V9lChoBkdAZPmk8A7xNWgHTegDaAhHQLNX6zxPO6d1fZQoaAZHQGcCcHv+fiBoB03oA2gIR0CzWU0FfReDdX2UKGgGR0BkLBKSPluFaAdN6ANoCEdAs1pEAYHgP3V9lChoBkdAZvyI55qubWgHTegDaAhHQLNajE5yU9p1fZQoaAZHQGLmxtHhCMRoB03oA2gIR0CzXB7QHAymdX2UKGgGR0BwvRRWLgn/aAdNrwNoCEdAs1xKattALXV9lChoBkdAZ6+wL3K0U2gHTegDaAhHQLNeP4D9wWF1fZQoaAZHQGW2wD/2kBVoB03oA2gIR0CzXtv7rLQpdX2UKGgGR0BonALiMo+faAdN6ANoCEdAs19aU5dWyXV9lChoBkdAcgb7P6be/GgHTZoDaAhHQLNgz3PAwf11fZQoaAZHQGj4RSP2f05oB03oA2gIR0CzYO85S3spdX2UKGgGR0BgfDbnHNoraAdN6ANoCEdAs2LniuMdcXV9lChoBkdAYSatoSL612gHTegDaAhHQLNi+08eS0V1fZQoaAZHQGXO6KtPpINoB03oA2gIR0CzZUrKaG5+dX2UKGgGR0BnqAKSgXdkaAdN6ANoCEdAs2V1EkSmInV9lChoBkdAZ44xGDtgKGgHTegDaAhHQLNmP3IdU851fZQoaAZHQHG8WsNlRP5oB00RA2gIR0CzZlFZTyavdX2UKGgGR0BkLE9nscABaAdN6ANoCEdAs2aFN0vGqHV9lChoBkdAcF0qABkqc2gHTVQBaAhHQLNxXuTibUh1fZQoaAZHQGMKRIJ7b+NoB03oA2gIR0CzcbIrSVnmdX2UKGgGR0BwKbQJHAh0aAdNUANoCEdAs3IR8UmD2HV9lChoBkdAZUvTSb6P82gHTegDaAhHQLNyd8BdUsF1fZQoaAZHQHGL/apPykNoB00VAWgIR0CzcqpKvmozdX2UKGgGR0Bw3r6k690zaAdNzAJoCEdAs3OlH4Glh3V9lChoBkdAYfhhUipvP2gHTegDaAhHQLNzvNRm9QJ1fZQoaAZHQHB0O9eyAx1oB02hAWgIR0Czc/2CROk+dX2UKGgGR0BIKz37DVH4aAdLy2gIR0CzdCzVQQ+VdX2UKGgGR0BmI1O9FnZkaAdN6ANoCEdAs3Tf/Khcq3V9lChoBkdAYYh3EAHVw2gHTegDaAhHQLN1OYdhiLF1fZQoaAZHQGf5EXk5p8FoB03oA2gIR0CzdYKnBLwndX2UKGgGR0BBbADaGpMpaAdLrmgIR0CzddnBLwnZdX2UKGgGR0BwSg33pOeraAdNSwJoCEdAs3arOKO1fHV9lChoBkdAZRFicXm/32gHTegDaAhHQLN20njQzDZ1fZQoaAZHQG5vibtqpLpoB00rAmgIR0Czd03IIWxhdX2UKGgGR0BvrU5Ke05VaAdN2QFoCEdAs3eyjnFHa3V9lChoBkdAY4CS6DoQnWgHTegDaAhHQLN4oBp5/sp1fZQoaAZHQG3Llgc94eNoB00oA2gIR0CzeUqXWvr4dX2UKGgGR0BzhOhufmLcaAdNDgFoCEdAs3pPbj94vHV9lChoBkdAcRm0JWvKU2gHTTkDaAhHQLN7iX+VC5V1fZQoaAZHQGgWOymhufpoB03oA2gIR0CzfLsRlHz6dX2UKGgGR0BzFQyIpH7QaAdNowJoCEdAs34TTx5LRXV9lChoBkdAYsTdj5Kvm2gHTegDaAhHQLN+yIacZtN1fZQoaAZHQGmVz4L1EmZoB03oA2gIR0CzgBGhAWzodX2UKGgGR0BkWGI2wV0taAdN6ANoCEdAs4AqAYpDu3V9lChoBkdAZ3vlwtJ4B2gHTegDaAhHQLOAl+NLlFN1fZQoaAZHQHKj2CuloDhoB019A2gIR0CzgRh9XtBwdX2UKGgGR0Bj/IecQRPHaAdN6ANoCEdAs4FALQXyiHV9lChoBkdAa4ceqaPS2GgHTegDaAhHQLOB3OafBep1fZQoaAZHQGX3N83Mpw1oB03oA2gIR0CzgvXUUfxMdX2UKGgGR0ByJ/4/NZ/1aAdNaANoCEdAs4NmKP4mC3V9lChoBkdAZeixL0z0pWgHTegDaAhHQLODlUD+zdF1fZQoaAZHQG7s/Mnqmj1oB02AAmgIR0Czg7Le67NCdX2UKGgGR0Bj24Cr92ovaAdN6ANoCEdAs4P739JjD3V9lChoBkdAcfTjnV5KOGgHTaoBaAhHQLOFCYaYNRZ1fZQoaAZHQGAscg6ltTFoB03oA2gIR0CzhT3MY/FBdX2UKGgGR0BmBGS0Sh8IaAdN6ANoCEdAs4YGkHlfZ3V9lChoBkdAb3eAbyYoiWgHTU0CaAhHQLOGbCVrylN1fZQoaAZHQHFGulGgBcRoB01mAWgIR0Czhut0V8CxdX2UKGgGR0BlGfwEyLydaAdN6ANoCEdAs4bvJeVs13V9lChoBkdAb7exbjcVQGgHTTUBaAhHQLOJabF0gbJ1fZQoaAZHQE0UUA1ejVRoB0uZaAhHQLOJgxO+IuZ1ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWVgQEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJSFlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoI4oQxooOv9KFaGO8Q16rFSu/AIwDaW5jlIoRz/cMvwhmIdXh4C5XXXeh0gB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRKx67XY3VidWIu",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": "Generator(PCG64)"
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 128,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-001/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c643a290ec6aa0a73ce86f372d32f41d870d9710e83896d3b31540f19b960b8
3
+ size 87929
ppo-LunarLander-v2-001/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1d9b3d5ccef427434da4d9756f321b3cb175e2d628e98b11ccc5a768fadab4f
3
+ size 43329
ppo-LunarLander-v2-001/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-001/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 243.0140969, "std_reward": 28.53719096440896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-01T21:11:51.875925"}
 
1
+ {"mean_reward": 278.56586039999996, "std_reward": 21.937133700235208, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-01T22:07:33.085674"}