File size: 15,583 Bytes
bb5fd70
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ac7d06fb910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ac7d06fdc80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690899019367566887, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIdLLPrUxl7zsZhg/IdLLPrUxl7zsZhg/IdLLPrUxl7zsZhg/IdLLPrUxl7zsZhg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAizQzP86JjL9C672/uY9GPjegpL5W9JC/7yDzPigP6T4b9ao+OyrTv24tmz8TRZi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAh0ss+tTGXvOxmGD9ancg7zGwbuyOImzoh0ss+tTGXvOxmGD9ancg7zGwbuyOImzoh0ss+tTGXvOxmGD9ancg7zGwbuyOImzoh0ss+tTGXvOxmGD9ancg7zGwbuyOImzqUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39808753 -0.01845632  0.59532046]\n [ 0.39808753 -0.01845632  0.59532046]\n [ 0.39808753 -0.01845632  0.59532046]\n [ 0.39808753 -0.01845632  0.59532046]]", "desired_goal": "[[ 0.7000205  -1.0979555  -1.483742  ]\n [ 0.19390763 -0.32153484 -1.1324565 ]\n [ 0.47486064  0.45519376  0.33390126]\n [-1.6497263   1.2123239  -1.189608  ]]", "observation": "[[ 0.39808753 -0.01845632  0.59532046  0.00612227 -0.0023716   0.00118661]\n [ 0.39808753 -0.01845632  0.59532046  0.00612227 -0.0023716   0.00118661]\n [ 0.39808753 -0.01845632  0.59532046  0.00612227 -0.0023716   0.00118661]\n [ 0.39808753 -0.01845632  0.59532046  0.00612227 -0.0023716   0.00118661]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgdSXPUZ5m70FA4Y+sYzoPXFoiL155mA+3BLsvf8MqrpuMDo+wT7Dvcb2nrxQ40U+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.07413579 -0.0759149   0.2617418 ]\n [ 0.1135496  -0.06660546  0.21962918]\n [-0.11527035 -0.00129738  0.18182537]\n [-0.09533454 -0.01940478  0.19324994]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILxnHSPYoBsCUhpRSlIwBbJRLMowBdJRHQKYz3//echF1fZQoaAZoCWgPQwghk4ychZ0MwJSGlFKUaBVLMmgWR0CmM5qjBVMmdX2UKGgGaAloD0MIPZl/9E1qGMCUhpRSlGgVSzJoFkdApjNbWqcVg3V9lChoBmgJaA9DCH2wjA3dDA7AlIaUUpRoFUsyaBZHQKYzGG+K0lZ1fZQoaAZoCWgPQwh/MVuyKqIGwJSGlFKUaBVLMmgWR0CmNMOhkAggdX2UKGgGaAloD0MILSKKyRuAD8CUhpRSlGgVSzJoFkdApjR+NDMNdHV9lChoBmgJaA9DCOM48Gq5cwPAlIaUUpRoFUsyaBZHQKY0PoyKvV51fZQoaAZoCWgPQwj4pX7eVOQNwJSGlFKUaBVLMmgWR0CmM/sZpBX0dX2UKGgGaAloD0MI91YkJqjxEcCUhpRSlGgVSzJoFkdApjW9GCqZMXV9lChoBmgJaA9DCN46/3bZ7xHAlIaUUpRoFUsyaBZHQKY1eJhvze51fZQoaAZoCWgPQwjoTNpU3QMPwJSGlFKUaBVLMmgWR0CmNToP9UCJdX2UKGgGaAloD0MIqio0EMsWE8CUhpRSlGgVSzJoFkdApjT3NmlImXV9lChoBmgJaA9DCNJUT+YfbRHAlIaUUpRoFUsyaBZHQKY3MozeoDR1fZQoaAZoCWgPQwiT/fM0YDANwJSGlFKUaBVLMmgWR0CmNu26K+BZdX2UKGgGaAloD0MIAkcCDTZ1BMCUhpRSlGgVSzJoFkdApjauqPwNLHV9lChoBmgJaA9DCOnuOhvynxXAlIaUUpRoFUsyaBZHQKY2bFzdUKl1fZQoaAZoCWgPQwiXcOgtHg4QwJSGlFKUaBVLMmgWR0CmOMA2qDK6dX2UKGgGaAloD0MIXwg57/+jCsCUhpRSlGgVSzJoFkdApjh7T+ee4HV9lChoBmgJaA9DCC2T4Xg+Iw3AlIaUUpRoFUsyaBZHQKY4PIV/MGJ1fZQoaAZoCWgPQwhKuJBHcMMMwJSGlFKUaBVLMmgWR0CmN/m8M/hVdX2UKGgGaAloD0MIYJLKFHOQDcCUhpRSlGgVSzJoFkdApjo3X9R77nV9lChoBmgJaA9DCK+ytikelxHAlIaUUpRoFUsyaBZHQKY58oegctJ1fZQoaAZoCWgPQwiAKm7cYq4QwJSGlFKUaBVLMmgWR0CmObOVX3g2dX2UKGgGaAloD0MIbt44Kcz7FcCUhpRSlGgVSzJoFkdApjlwpYs/ZHV9lChoBmgJaA9DCKpHGtzWtgvAlIaUUpRoFUsyaBZHQKY7Yo86mwd1fZQoaAZoCWgPQwhK7xtfewYKwJSGlFKUaBVLMmgWR0CmOx0liSaFdX2UKGgGaAloD0MIYkhOJm6lFMCUhpRSlGgVSzJoFkdApjrdkjHGTHV9lChoBmgJaA9DCG6nrRHBWAvAlIaUUpRoFUsyaBZHQKY6mhHLA591fZQoaAZoCWgPQwjFVPoJZ1cPwJSGlFKUaBVLMmgWR0CmPFcJMQEqdX2UKGgGaAloD0MIRRMoYhEDCcCUhpRSlGgVSzJoFkdApjwSEHt4RnV9lChoBmgJaA9DCIi7ehUZvQjAlIaUUpRoFUsyaBZHQKY70o86mwd1fZQoaAZoCWgPQwjsT+JzJ7gFwJSGlFKUaBVLMmgWR0CmO48YqG1ydX2UKGgGaAloD0MIRtPZyeAIC8CUhpRSlGgVSzJoFkdApj1gv6CUYHV9lChoBmgJaA9DCK6Dg72JgRDAlIaUUpRoFUsyaBZHQKY9G8cuJ1t1fZQoaAZoCWgPQwjql4i3zk8SwJSGlFKUaBVLMmgWR0CmPNxOk+HKdX2UKGgGaAloD0MIvEBJgQWwEMCUhpRSlGgVSzJoFkdApjyY40dilXV9lChoBmgJaA9DCOkOYmcKvQvAlIaUUpRoFUsyaBZHQKY+Rdrwe/51fZQoaAZoCWgPQwhBZ9Km6h4GwJSGlFKUaBVLMmgWR0CmPgBo/RmcdX2UKGgGaAloD0MI1xUzwtsjCcCUhpRSlGgVSzJoFkdApj3A3zcynHV9lChoBmgJaA9DCGMq/YSzuwrAlIaUUpRoFUsyaBZHQKY9fX/5tWN1fZQoaAZoCWgPQwj2JLA5By8KwJSGlFKUaBVLMmgWR0CmPzFGXokidX2UKGgGaAloD0MIcmvSbYkcBcCUhpRSlGgVSzJoFkdApj7r5oGpuXV9lChoBmgJaA9DCPmDgefesxDAlIaUUpRoFUsyaBZHQKY+rHMlkYp1fZQoaAZoCWgPQwjABdmyfJ0SwJSGlFKUaBVLMmgWR0CmPmlHrhR7dX2UKGgGaAloD0MI3PXSFAGOC8CUhpRSlGgVSzJoFkdApkAg+hXbNHV9lChoBmgJaA9DCDZ0sz9QrhLAlIaUUpRoFUsyaBZHQKY/27ZnL7p1fZQoaAZoCWgPQwg656c4DrwFwJSGlFKUaBVLMmgWR0CmP5yDZlFudX2UKGgGaAloD0MItmgB2lbTDcCUhpRSlGgVSzJoFkdApj9ZYs/Y8XV9lChoBmgJaA9DCD4g0Jm0yQjAlIaUUpRoFUsyaBZHQKZBIc2itaJ1fZQoaAZoCWgPQwj7BFCMLBkSwJSGlFKUaBVLMmgWR0CmQNySFGoadX2UKGgGaAloD0MIutxgqMNKBsCUhpRSlGgVSzJoFkdApkCc/yGzr3V9lChoBmgJaA9DCPrS25+LBhLAlIaUUpRoFUsyaBZHQKZAWd+Xqqx1fZQoaAZoCWgPQwgNVTGVfgIFwJSGlFKUaBVLMmgWR0CmQgoEbHZLdX2UKGgGaAloD0MIaxFRTN4AEMCUhpRSlGgVSzJoFkdApkHErZrYXnV9lChoBmgJaA9DCIcYr3lVNxHAlIaUUpRoFUsyaBZHQKZBhUWl/H51fZQoaAZoCWgPQwisOxbbpKIIwJSGlFKUaBVLMmgWR0CmQUHYg7o0dX2UKGgGaAloD0MIP1jGhm72AsCUhpRSlGgVSzJoFkdApkMMvK2a2HV9lChoBmgJaA9DCC+H3XcMDxHAlIaUUpRoFUsyaBZHQKZCx57gKnh1fZQoaAZoCWgPQwhHkbWGUksQwJSGlFKUaBVLMmgWR0CmQohhx5s1dX2UKGgGaAloD0MICHb8FwgCBcCUhpRSlGgVSzJoFkdApkJE/t6X0HV9lChoBmgJaA9DCCujkc8rPgXAlIaUUpRoFUsyaBZHQKZEE53kgfV1fZQoaAZoCWgPQwg3VIzzNwECwJSGlFKUaBVLMmgWR0CmQ86Mzdk8dX2UKGgGaAloD0MIQieEDrrkAcCUhpRSlGgVSzJoFkdApkOPLA57xHV9lChoBmgJaA9DCJRt4A7USQPAlIaUUpRoFUsyaBZHQKZDS9hZyMl1fZQoaAZoCWgPQwhF14UfnG8HwJSGlFKUaBVLMmgWR0CmRQ7+Lm6odX2UKGgGaAloD0MIZcix9QxBDMCUhpRSlGgVSzJoFkdApkTJnzxwynV9lChoBmgJaA9DCMFSXcDLLAfAlIaUUpRoFUsyaBZHQKZEimbb1yx1fZQoaAZoCWgPQwhCXaRQFh4DwJSGlFKUaBVLMmgWR0CmREcHv+fidX2UKGgGaAloD0MIl631RUJbA8CUhpRSlGgVSzJoFkdApkYEP8Q7LnV9lChoBmgJaA9DCLMj1Xd+EQPAlIaUUpRoFUsyaBZHQKZFv0W/JvJ1fZQoaAZoCWgPQwiDhZM0fwwPwJSGlFKUaBVLMmgWR0CmRYAkka/AdX2UKGgGaAloD0MIKbNBJhlZCsCUhpRSlGgVSzJoFkdApkU8qFyq/HV9lChoBmgJaA9DCADHnj2XyQbAlIaUUpRoFUsyaBZHQKZHBas6q811fZQoaAZoCWgPQwjNdK+T+rILwJSGlFKUaBVLMmgWR0CmRsF/6O5sdX2UKGgGaAloD0MIBFWjVwP0C8CUhpRSlGgVSzJoFkdApkaChJyyU3V9lChoBmgJaA9DCDbJj/gV+xPAlIaUUpRoFUsyaBZHQKZGQE4//vR1fZQoaAZoCWgPQwh32ERmLpAHwJSGlFKUaBVLMmgWR0CmSB03wTdtdX2UKGgGaAloD0MIM8NGWb+ZB8CUhpRSlGgVSzJoFkdApkfYJqqOtHV9lChoBmgJaA9DCEKwql5+5wbAlIaUUpRoFUsyaBZHQKZHmQZn+Q51fZQoaAZoCWgPQwgQ7PgvEIT9v5SGlFKUaBVLMmgWR0CmR1XRPXTWdX2UKGgGaAloD0MIt5bJcDxfD8CUhpRSlGgVSzJoFkdApkk9wYLsr3V9lChoBmgJaA9DCHkDzHwHvwDAlIaUUpRoFUsyaBZHQKZI+O6unuR1fZQoaAZoCWgPQwjuYMQ+AYQSwJSGlFKUaBVLMmgWR0CmSLm5MDfWdX2UKGgGaAloD0MIAwXeyafXEMCUhpRSlGgVSzJoFkdApkh2lMyrP3V9lChoBmgJaA9DCBZsI57shgfAlIaUUpRoFUsyaBZHQKZKNDZUT+N1fZQoaAZoCWgPQwgi36XUJWP/v5SGlFKUaBVLMmgWR0CmSe7BXS0CdX2UKGgGaAloD0MI/G66ZYc4BMCUhpRSlGgVSzJoFkdApkmveBQN1HV9lChoBmgJaA9DCCcvMgG/xg/AlIaUUpRoFUsyaBZHQKZJbFOO8011fZQoaAZoCWgPQwhDrtSzINQGwJSGlFKUaBVLMmgWR0CmS0SN4qwydX2UKGgGaAloD0MI0Qg2rn9XDMCUhpRSlGgVSzJoFkdApkr/HxSYPXV9lChoBmgJaA9DCLTJ4ZNOBAjAlIaUUpRoFUsyaBZHQKZKv/0/W2B1fZQoaAZoCWgPQwjog2Vs6IYOwJSGlFKUaBVLMmgWR0CmSnzbN8mbdX2UKGgGaAloD0MIfSJPkq45DMCUhpRSlGgVSzJoFkdApkxBJ2+wknV9lChoBmgJaA9DCCaqtwa2yv+/lIaUUpRoFUsyaBZHQKZL+9WZJCl1fZQoaAZoCWgPQwg/xAYLJwkFwJSGlFKUaBVLMmgWR0CmS7yCFsYVdX2UKGgGaAloD0MIHeihtg3jAMCUhpRSlGgVSzJoFkdApkt5PVNHpnV9lChoBmgJaA9DCBvXv+szpwXAlIaUUpRoFUsyaBZHQKZNRvsJIDp1fZQoaAZoCWgPQwicFVETfR4GwJSGlFKUaBVLMmgWR0CmTQGUwBYFdX2UKGgGaAloD0MIycovgzGi/L+UhpRSlGgVSzJoFkdApkzCOR1YAHV9lChoBmgJaA9DCMyZ7Qp90AHAlIaUUpRoFUsyaBZHQKZMftdiUgV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}