Upload agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 254.26 +/- 17.49
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78d2b90b1870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78d2b90b1900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78d2b90b1990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78d2b90b1a20>", "_build": "<function ActorCriticPolicy._build at 0x78d2b90b1ab0>", "forward": "<function ActorCriticPolicy.forward at 0x78d2b90b1b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78d2b90b1bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78d2b90b1c60>", "_predict": "<function ActorCriticPolicy._predict at 0x78d2b90b1cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78d2b90b1d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78d2b90b1e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78d2b90b1ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78d2c294d180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690453620745794719, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN1uD2POgm6w0h0unrcRjUeyiy7axaQOQAAgD8AAAAAMz0ePKhhkz3QF/g8t2l1vjylcb27N509AAAAAAAAAAANJC8+7cmCPygUUT7Vx8O+v5/FPppRVT0AAAAAAAAAAKa8o72ulaW6i+DaNiJaoTF0yRu6KGH7tQAAgD8AAIA/Gn0YPpVlLD9hrK6+D/CvvrClrD1FqWa+AAAAAAAAAABmeR+9UkA5PltxFT7E4Ci+12DAPc4ZU70AAAAAAAAAAADvzTysIqY/MKfmPSejA78nYAc+I+LwPAAAAAAAAAAAYIABPgqdXT+jlMS9cprAvjuqJj5WLDa+AAAAAAAAAADzkT++eV2oPwejw75TBR+/HpQ3vnKd2b0AAAAAAAAAADOTCrr2GAa6bk/FtiJEYLDIER673k3tNQAAgD8AAIA/zZRSPWwE87s2u587u78QPLLmST3KqP68AACAPwAAgD/m5js9h/w0PxrURr4Ces++QSyvPBT/wb0AAAAAAAAAAABg5DuMeCU+TmI/PUpxKL6xDa09bH8GvAAAAAAAAAAA5sFKvs5kET8dYkA+4EGnvshzxL2Vwqk9AAAAAAAAAABmupk72dyxPtOgzb1n9IK+WCatvRoJcL0AAAAAAAAAAM3EUDvpbRO8zeypOf0smzwemYA9taaAvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGtr2xptaaMAWyUTQABjAF0lEdAmDKaUFB6bHV9lChoBkdAcuE4vN/vv2gHS/VoCEdAmDLV50KZ2XV9lChoBkdAcf4vCdjG1mgHTTMBaAhHQJg1bazu4PR1fZQoaAZHQHDjP1lGwzNoB00DAWgIR0CYNg3ZPEbYdX2UKGgGR0A+bAnlXA/LaAdLymgIR0CYNn2kzoECdX2UKGgGR0BxHRYMfA9FaAdNDAFoCEdAmDdUSZjQRnV9lChoBkdAcWfg9vCMxWgHTQ8BaAhHQJg4ckona391fZQoaAZHQHM34xk/bCdoB0v6aAhHQJg5MXaakRB1fZQoaAZHQHNJ1r6+FlFoB00FAWgIR0CYOsobXHzZdX2UKGgGR0BxH6E/SpiraAdNZgFoCEdAmDsBBqsU7HV9lChoBkdAcPJFXq7iAGgHTVcBaAhHQJg7QXDWK/F1fZQoaAZHQHO/5ElVtGdoB0vnaAhHQJg8Z6nivPl1fZQoaAZHQHMAyDmKZUloB00YAWgIR0CYPJ6T4cm0dX2UKGgGR0BwlrUExIrfaAdNKwFoCEdAmD1Dn3cpLHV9lChoBkdAcRhNZ/0/W2gHTSQBaAhHQJg+koLG7z11fZQoaAZHQHED0CA+Y+loB00wAWgIR0CYPqyYG+sYdX2UKGgGR0ByQqR1X/5taAdNYAFoCEdAmD7XC0ngHnV9lChoBkdAcU4QUHpr12gHS/1oCEdAmD8lBdD6WXV9lChoBkdAc1ZZxaPjn2gHTQEBaAhHQJg/sS9M9KV1fZQoaAZHQGxLFR51Ng1oB00FAWgIR0CYQK8n/kvLdX2UKGgGR0ByrWtA9mpVaAdNeAJoCEdAmEC77CSA6XV9lChoBkdAb0HoIOYplWgHTQUBaAhHQJhBVSzgMtt1fZQoaAZHQHBYkdBBzFNoB001AWgIR0CYQYQ7cO9WdX2UKGgGR0BxxAma6STyaAdL52gIR0CYQj6r/82rdX2UKGgGR0Bx+GCAc1fmaAdNHgFoCEdAmEJguZkTYnV9lChoBkdAcoqnGbTc7GgHTREBaAhHQJhDMoNNJvp1fZQoaAZHQHKQEcwQDmtoB0v1aAhHQJhEvtKIznB1fZQoaAZHQHELaAe7tiRoB00RAWgIR0CYRPzDGcWkdX2UKGgGR0Bu0SEg4ffXaAdNUQFoCEdAmEUwMx46fnV9lChoBkdAchgMHbAUL2gHS95oCEdAmEXXg1m8NHV9lChoBkdAcrVbiZOSGWgHS/ZoCEdAmEYcZ9/jKnV9lChoBkdAcK1RB/qgRWgHTQMBaAhHQJhGZpUPxx11fZQoaAZHQHDGHvlU6xRoB0vgaAhHQJhGbcFhXsB1fZQoaAZHQHGy/XK8tf5oB00EAWgIR0CYRqSeiBXkdX2UKGgGR0BwJKcwxnFpaAdNagFoCEdAmEdZVXFLnXV9lChoBkdAcG5SdvsJIGgHS+poCEdAmEgto371qXV9lChoBkdAccvqe9SMtWgHTQoBaAhHQJhIeig00nB1fZQoaAZHQHKc5FLFn7JoB00cAWgIR0CYSPJ+UhV3dX2UKGgGR0BzXX41xbSraAdL52gIR0CYSTZP2wmmdX2UKGgGR0BwOiETQE6laAdNIQFoCEdAmEqh28qWknV9lChoBkdAbEg44Ia99WgHTRIBaAhHQJhLNlGwzLx1fZQoaAZHQHBjZDmbLEFoB01hAWgIR0CYfmoxHoX9dX2UKGgGR0BxwP101ZTyaAdL9GgIR0CYfsF+/gzhdX2UKGgGR0By/3lq8DjjaAdNBgFoCEdAmH7kUwi7kHV9lChoBkdAc0pmoR7JGWgHTQ8BaAhHQJiAKSeRPoF1fZQoaAZHQHIu6C17Y05oB00LAWgIR0CYgFKgqVhTdX2UKGgGR0ByO+iM5wOwaAdNMgFoCEdAmIBokqtoz3V9lChoBkdAcHciZv1lG2gHS+ZoCEdAmICXhn8KonV9lChoBkdAcPgYRNATqWgHTQ8BaAhHQJiBAXKr7wd1fZQoaAZHQHHIKO5rgwZoB00vAWgIR0CYgZ5E+gUUdX2UKGgGR0BB71UVBUrDaAdLqWgIR0CYgjvfj0cwdX2UKGgGR0BzXay1NQCTaAdNSwFoCEdAmIJtrwe/6HV9lChoBkdAcJIKNyYG+2gHTQkBaAhHQJiCqgWac7R1fZQoaAZHQHC0DaXa8HxoB00OAWgIR0CYgzMmF8G+dX2UKGgGR0BxpOdd3SrpaAdNMQFoCEdAmINoBeXzDnV9lChoBkdAcZ1LcKw6hmgHS9NoCEdAmIQ58OTaCnV9lChoBkdAcVPgDA8B/GgHTQoBaAhHQJiFX9YOlO51fZQoaAZHQHEEG2CuloFoB01aAWgIR0CYhZMju8brdX2UKGgGR0Bz3v8k2P1daAdL92gIR0CYhciUgSvldX2UKGgGR0BwGJyGSIP9aAdNDgFoCEdAmIZL8m8dxXV9lChoBkdAbr6UHIIWxmgHTQkBaAhHQJiH1r30wrV1fZQoaAZHQG16nI6r/85oB00VAWgIR0CYiFsCDEm6dX2UKGgGR0BuxPb48EFGaAdNKgFoCEdAmIjbx7RfGHV9lChoBkdAcArtXxOLzmgHTRsBaAhHQJiJUP5HmRx1fZQoaAZHQG8b84gieNFoB00oAWgIR0CYiUxsEaESdX2UKGgGR0BuQMyBTXJ6aAdL9mgIR0CYig8uSOindX2UKGgGR0ByNB6PbO/taAdNDwFoCEdAmIpWDxsl9nV9lChoBkdAcl4A/cFhX2gHTSUBaAhHQJiKV0PpY9x1fZQoaAZHQG/R8Hv+fiBoB00CAWgIR0CYiwlOGj9GdX2UKGgGR0Bx5wJVsDW9aAdL+2gIR0CYixKT0QK8dX2UKGgGR0ByKPtrsSkCaAdNKQFoCEdAmItAvHtF8XV9lChoBkdAcq0stkFwDWgHS/NoCEdAmIzExVQyh3V9lChoBkdAQdvHvMKTjmgHS9toCEdAmI6e4smOVHV9lChoBkdAb1GFBY3eemgHTSsBaAhHQJiO3AYYR/V1fZQoaAZHQHHqMr7O3UhoB01qAWgIR0CYj215B1LbdX2UKGgGR0ByV4rnTy8SaAdNKQFoCEdAmI+j2SMcZXV9lChoBkdAKnJlJ6IFeWgHS9RoCEdAmI/GF8G9pXV9lChoBkdAcTiYixFAmmgHTREBaAhHQJiQ3+bVjI91fZQoaAZHQHHYdszl90BoB00NAWgIR0CYkTjASFoMdX2UKGgGR0BxuRCkXUH6aAdL/2gIR0CYkf1JUYKqdX2UKGgGR0Bxadd7fHghaAdL/WgIR0CYkjWyTpxFdX2UKGgGR0Byk79YOlO5aAdNCAFoCEdAmJKIpc5bQnV9lChoBkdAcLxiLVFx42gHTTUBaAhHQJiS2lSCOFR1fZQoaAZHQHFL75/LDAJoB00AAWgIR0CYkwDaGpMpdX2UKGgGR0Bu3LsdDIBBaAdNDQFoCEdAmJOI3Ns3ynV9lChoBkdAccUWwu/UOWgHTTQBaAhHQJiUm3pfQa91fZQoaAZHQHEA4kE9t/FoB00NAWgIR0CYlZci4axYdX2UKGgGR0ByRaIeo1k2aAdL32gIR0CYlzyYoiLVdX2UKGgGR0Bx6hQLux8laAdNAgFoCEdAmJd4bwSamXV9lChoBkdAckmbzshPkGgHTR8BaAhHQJiZI7lq8Dl1fZQoaAZHQHCbz0lJHy5oB00ZAWgIR0CYmaO3lS0jdX2UKGgGR0ByDctapxWDaAdNHgFoCEdAmJpi8WbgCXV9lChoBkdAcDctCiRGMGgHTQcBaAhHQJibXkmx+rl1fZQoaAZHQC0lUOuq3mVoB0vnaAhHQJicUBLf1pV1fZQoaAZHQHGsCJGe+VVoB00sAWgIR0CYnKfcN6PbdX2UKGgGR0Bxu8KPXCj2aAdNEwFoCEdAmJz2AXl8xHV9lChoBkdAcDwBPbfxc2gHTR0BaAhHQJieURh+fAd1fZQoaAZHQHDQpwGW2PVoB00GAWgIR0CYnxE4//vOdX2UKGgGR0BwoE73fyf+aAdNIAFoCEdAmJ9GwJPZZnV9lChoBkdAb0n5i3G4qmgHTUoBaAhHQJif5yhi9Zl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4c3e4794cb866d91b6c668e2eac4ca745219e6bcc40ed9f039cee4ac8f0aeea
|
3 |
+
size 146910
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78d2b90b1870>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78d2b90b1900>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78d2b90b1990>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78d2b90b1a20>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78d2b90b1ab0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78d2b90b1b40>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78d2b90b1bd0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78d2b90b1c60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78d2b90b1cf0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78d2b90b1d80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78d2b90b1e10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78d2b90b1ea0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78d2c294d180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690453620745794719,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALN1uD2POgm6w0h0unrcRjUeyiy7axaQOQAAgD8AAAAAMz0ePKhhkz3QF/g8t2l1vjylcb27N509AAAAAAAAAAANJC8+7cmCPygUUT7Vx8O+v5/FPppRVT0AAAAAAAAAAKa8o72ulaW6i+DaNiJaoTF0yRu6KGH7tQAAgD8AAIA/Gn0YPpVlLD9hrK6+D/CvvrClrD1FqWa+AAAAAAAAAABmeR+9UkA5PltxFT7E4Ci+12DAPc4ZU70AAAAAAAAAAADvzTysIqY/MKfmPSejA78nYAc+I+LwPAAAAAAAAAAAYIABPgqdXT+jlMS9cprAvjuqJj5WLDa+AAAAAAAAAADzkT++eV2oPwejw75TBR+/HpQ3vnKd2b0AAAAAAAAAADOTCrr2GAa6bk/FtiJEYLDIER673k3tNQAAgD8AAIA/zZRSPWwE87s2u587u78QPLLmST3KqP68AACAPwAAgD/m5js9h/w0PxrURr4Ces++QSyvPBT/wb0AAAAAAAAAAABg5DuMeCU+TmI/PUpxKL6xDa09bH8GvAAAAAAAAAAA5sFKvs5kET8dYkA+4EGnvshzxL2Vwqk9AAAAAAAAAABmupk72dyxPtOgzb1n9IK+WCatvRoJcL0AAAAAAAAAAM3EUDvpbRO8zeypOf0smzwemYA9taaAvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGtr2xptaaMAWyUTQABjAF0lEdAmDKaUFB6bHV9lChoBkdAcuE4vN/vv2gHS/VoCEdAmDLV50KZ2XV9lChoBkdAcf4vCdjG1mgHTTMBaAhHQJg1bazu4PR1fZQoaAZHQHDjP1lGwzNoB00DAWgIR0CYNg3ZPEbYdX2UKGgGR0A+bAnlXA/LaAdLymgIR0CYNn2kzoECdX2UKGgGR0BxHRYMfA9FaAdNDAFoCEdAmDdUSZjQRnV9lChoBkdAcWfg9vCMxWgHTQ8BaAhHQJg4ckona391fZQoaAZHQHM34xk/bCdoB0v6aAhHQJg5MXaakRB1fZQoaAZHQHNJ1r6+FlFoB00FAWgIR0CYOsobXHzZdX2UKGgGR0BxH6E/SpiraAdNZgFoCEdAmDsBBqsU7HV9lChoBkdAcPJFXq7iAGgHTVcBaAhHQJg7QXDWK/F1fZQoaAZHQHO/5ElVtGdoB0vnaAhHQJg8Z6nivPl1fZQoaAZHQHMAyDmKZUloB00YAWgIR0CYPJ6T4cm0dX2UKGgGR0BwlrUExIrfaAdNKwFoCEdAmD1Dn3cpLHV9lChoBkdAcRhNZ/0/W2gHTSQBaAhHQJg+koLG7z11fZQoaAZHQHED0CA+Y+loB00wAWgIR0CYPqyYG+sYdX2UKGgGR0ByQqR1X/5taAdNYAFoCEdAmD7XC0ngHnV9lChoBkdAcU4QUHpr12gHS/1oCEdAmD8lBdD6WXV9lChoBkdAc1ZZxaPjn2gHTQEBaAhHQJg/sS9M9KV1fZQoaAZHQGxLFR51Ng1oB00FAWgIR0CYQK8n/kvLdX2UKGgGR0ByrWtA9mpVaAdNeAJoCEdAmEC77CSA6XV9lChoBkdAb0HoIOYplWgHTQUBaAhHQJhBVSzgMtt1fZQoaAZHQHBYkdBBzFNoB001AWgIR0CYQYQ7cO9WdX2UKGgGR0BxxAma6STyaAdL52gIR0CYQj6r/82rdX2UKGgGR0Bx+GCAc1fmaAdNHgFoCEdAmEJguZkTYnV9lChoBkdAcoqnGbTc7GgHTREBaAhHQJhDMoNNJvp1fZQoaAZHQHKQEcwQDmtoB0v1aAhHQJhEvtKIznB1fZQoaAZHQHELaAe7tiRoB00RAWgIR0CYRPzDGcWkdX2UKGgGR0Bu0SEg4ffXaAdNUQFoCEdAmEUwMx46fnV9lChoBkdAchgMHbAUL2gHS95oCEdAmEXXg1m8NHV9lChoBkdAcrVbiZOSGWgHS/ZoCEdAmEYcZ9/jKnV9lChoBkdAcK1RB/qgRWgHTQMBaAhHQJhGZpUPxx11fZQoaAZHQHDGHvlU6xRoB0vgaAhHQJhGbcFhXsB1fZQoaAZHQHGy/XK8tf5oB00EAWgIR0CYRqSeiBXkdX2UKGgGR0BwJKcwxnFpaAdNagFoCEdAmEdZVXFLnXV9lChoBkdAcG5SdvsJIGgHS+poCEdAmEgto371qXV9lChoBkdAccvqe9SMtWgHTQoBaAhHQJhIeig00nB1fZQoaAZHQHKc5FLFn7JoB00cAWgIR0CYSPJ+UhV3dX2UKGgGR0BzXX41xbSraAdL52gIR0CYSTZP2wmmdX2UKGgGR0BwOiETQE6laAdNIQFoCEdAmEqh28qWknV9lChoBkdAbEg44Ia99WgHTRIBaAhHQJhLNlGwzLx1fZQoaAZHQHBjZDmbLEFoB01hAWgIR0CYfmoxHoX9dX2UKGgGR0BxwP101ZTyaAdL9GgIR0CYfsF+/gzhdX2UKGgGR0By/3lq8DjjaAdNBgFoCEdAmH7kUwi7kHV9lChoBkdAc0pmoR7JGWgHTQ8BaAhHQJiAKSeRPoF1fZQoaAZHQHIu6C17Y05oB00LAWgIR0CYgFKgqVhTdX2UKGgGR0ByO+iM5wOwaAdNMgFoCEdAmIBokqtoz3V9lChoBkdAcHciZv1lG2gHS+ZoCEdAmICXhn8KonV9lChoBkdAcPgYRNATqWgHTQ8BaAhHQJiBAXKr7wd1fZQoaAZHQHHIKO5rgwZoB00vAWgIR0CYgZ5E+gUUdX2UKGgGR0BB71UVBUrDaAdLqWgIR0CYgjvfj0cwdX2UKGgGR0BzXay1NQCTaAdNSwFoCEdAmIJtrwe/6HV9lChoBkdAcJIKNyYG+2gHTQkBaAhHQJiCqgWac7R1fZQoaAZHQHC0DaXa8HxoB00OAWgIR0CYgzMmF8G+dX2UKGgGR0BxpOdd3SrpaAdNMQFoCEdAmINoBeXzDnV9lChoBkdAcZ1LcKw6hmgHS9NoCEdAmIQ58OTaCnV9lChoBkdAcVPgDA8B/GgHTQoBaAhHQJiFX9YOlO51fZQoaAZHQHEEG2CuloFoB01aAWgIR0CYhZMju8brdX2UKGgGR0Bz3v8k2P1daAdL92gIR0CYhciUgSvldX2UKGgGR0BwGJyGSIP9aAdNDgFoCEdAmIZL8m8dxXV9lChoBkdAbr6UHIIWxmgHTQkBaAhHQJiH1r30wrV1fZQoaAZHQG16nI6r/85oB00VAWgIR0CYiFsCDEm6dX2UKGgGR0BuxPb48EFGaAdNKgFoCEdAmIjbx7RfGHV9lChoBkdAcArtXxOLzmgHTRsBaAhHQJiJUP5HmRx1fZQoaAZHQG8b84gieNFoB00oAWgIR0CYiUxsEaESdX2UKGgGR0BuQMyBTXJ6aAdL9mgIR0CYig8uSOindX2UKGgGR0ByNB6PbO/taAdNDwFoCEdAmIpWDxsl9nV9lChoBkdAcl4A/cFhX2gHTSUBaAhHQJiKV0PpY9x1fZQoaAZHQG/R8Hv+fiBoB00CAWgIR0CYiwlOGj9GdX2UKGgGR0Bx5wJVsDW9aAdL+2gIR0CYixKT0QK8dX2UKGgGR0ByKPtrsSkCaAdNKQFoCEdAmItAvHtF8XV9lChoBkdAcq0stkFwDWgHS/NoCEdAmIzExVQyh3V9lChoBkdAQdvHvMKTjmgHS9toCEdAmI6e4smOVHV9lChoBkdAb1GFBY3eemgHTSsBaAhHQJiO3AYYR/V1fZQoaAZHQHHqMr7O3UhoB01qAWgIR0CYj215B1LbdX2UKGgGR0ByV4rnTy8SaAdNKQFoCEdAmI+j2SMcZXV9lChoBkdAKnJlJ6IFeWgHS9RoCEdAmI/GF8G9pXV9lChoBkdAcTiYixFAmmgHTREBaAhHQJiQ3+bVjI91fZQoaAZHQHHYdszl90BoB00NAWgIR0CYkTjASFoMdX2UKGgGR0BxuRCkXUH6aAdL/2gIR0CYkf1JUYKqdX2UKGgGR0Bxadd7fHghaAdL/WgIR0CYkjWyTpxFdX2UKGgGR0Byk79YOlO5aAdNCAFoCEdAmJKIpc5bQnV9lChoBkdAcLxiLVFx42gHTTUBaAhHQJiS2lSCOFR1fZQoaAZHQHFL75/LDAJoB00AAWgIR0CYkwDaGpMpdX2UKGgGR0Bu3LsdDIBBaAdNDQFoCEdAmJOI3Ns3ynV9lChoBkdAccUWwu/UOWgHTTQBaAhHQJiUm3pfQa91fZQoaAZHQHEA4kE9t/FoB00NAWgIR0CYlZci4axYdX2UKGgGR0ByRaIeo1k2aAdL32gIR0CYlzyYoiLVdX2UKGgGR0Bx6hQLux8laAdNAgFoCEdAmJd4bwSamXV9lChoBkdAckmbzshPkGgHTR8BaAhHQJiZI7lq8Dl1fZQoaAZHQHCbz0lJHy5oB00ZAWgIR0CYmaO3lS0jdX2UKGgGR0ByDctapxWDaAdNHgFoCEdAmJpi8WbgCXV9lChoBkdAcDctCiRGMGgHTQcBaAhHQJibXkmx+rl1fZQoaAZHQC0lUOuq3mVoB0vnaAhHQJicUBLf1pV1fZQoaAZHQHGsCJGe+VVoB00sAWgIR0CYnKfcN6PbdX2UKGgGR0Bxu8KPXCj2aAdNEwFoCEdAmJz2AXl8xHV9lChoBkdAcDwBPbfxc2gHTR0BaAhHQJieURh+fAd1fZQoaAZHQHDQpwGW2PVoB00GAWgIR0CYnxE4//vOdX2UKGgGR0BwoE73fyf+aAdNIAFoCEdAmJ9GwJPZZnV9lChoBkdAb0n5i3G4qmgHTUoBaAhHQJif5yhi9Zl1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 372,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.9999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 32,
|
62 |
+
"n_epochs": 6,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 16,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0830b941b58ee70206bc86d27b52c981ebbb7d3211d57ce39358a2d96daa3adb
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3269ca6ada6a84d8be58158f668304b656bbf36ac9a94c70ec229cd9b361132
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (180 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 254.2559081, "std_reward": 17.487007936536546, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-27T11:12:16.151340"}
|