--- license: apache-2.0 tags: - generated_from_trainer datasets: - jxner metrics: - precision - recall - f1 - accuracy model-index: - name: medicine-ner results: - task: name: Token Classification type: token-classification dataset: name: jxner type: jxner config: wnut_17 split: test args: wnut_17 metrics: - name: Precision type: precision value: 0.0 - name: Recall type: recall value: 0.0 - name: F1 type: f1 value: 0.0 - name: Accuracy type: accuracy value: 0.9 --- # medicine-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the jxner dataset. It achieves the following results on the evaluation set: - Loss: 0.5562 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 1 | 1.7398 | 0.0370 | 0.125 | 0.0571 | 0.65 | | No log | 2.0 | 2 | 1.5750 | 0.0 | 0.0 | 0.0 | 0.86 | | No log | 3.0 | 3 | 1.4146 | 0.0 | 0.0 | 0.0 | 0.88 | | No log | 4.0 | 4 | 1.2611 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 5.0 | 5 | 1.1173 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 6.0 | 6 | 0.9869 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 7.0 | 7 | 0.8737 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 8.0 | 8 | 0.7804 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 9.0 | 9 | 0.7074 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 10.0 | 10 | 0.6545 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 11.0 | 11 | 0.6181 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 12.0 | 12 | 0.5938 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 13.0 | 13 | 0.5780 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 14.0 | 14 | 0.5682 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 15.0 | 15 | 0.5623 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 16.0 | 16 | 0.5589 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 17.0 | 17 | 0.5571 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 18.0 | 18 | 0.5563 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 19.0 | 19 | 0.5562 | 0.0 | 0.0 | 0.0 | 0.9 | | No log | 20.0 | 20 | 0.5562 | 0.0 | 0.0 | 0.0 | 0.9 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2