--- license: cc-by-nc-4.0 library_name: diffusers base_model: runwayml/stable-diffusion-v1-5 tags: - lora - text-to-image --- # ⚡ FlashDiffusion: FlashSD ⚡
Flash Diffusion is a diffusion distillation method proposed in [ADD ARXIV]() *by Clément Chadebec, Onur Tasar and Benjamin Aubin.* This model is a 26.4M LoRA distilled version of SD1.5 model. The main purpose of this model is to reproduce the main results of the paper. # How to use? The model can be used using the `StableDiffusionPipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **2-4 steps**. ```python from diffusers import StableDiffusionPipeline, LCMScheduler adapter_id = "jasperai/flash-sd" pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", use_safetensors=True, ) pipe.scheduler = LCMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5", subfolder="scheduler", timestep_spacing="trailing", ) pipe.to("cuda") # Fuse and load LoRA weights pipe.load_lora_weights(adapter_id) pipe.fuse_lora() prompt = "A raccoon reading a book in a lush forest." image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0] ```