File size: 3,126 Bytes
56f1540 d35507a 56f1540 ef06a4f 56f1540 146c386 56f1540 0f446aa 56f1540 c63e5e5 30ea825 56f1540 0899d03 56f1540 0899d03 56f1540 0899d03 56f1540 5094372 56f1540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: cc-by-nc-4.0
library_name: diffusers
base_model: stabilityai/stable-diffusion-3-medium-diffusers
tags:
- lora
- text-to-image
inference: False
---
# ⚡ Flash Diffusion: FlashSD3 ⚡
Flash Diffusion is a diffusion distillation method proposed in [Flash Diffusion: Accelerating Any Conditional
Diffusion Model for Few Steps Image Generation](http://arxiv.org/abs/2406.02347) *by Clément Chadebec, Onur Tasar, Eyal Benaroche, and Benjamin Aubin.*
This model is a **90.4M** LoRA distilled version of [SD3](https://huggingface.co/stabilityai/stable-diffusion-3-medium) model that is able to generate 1024x1024 images in **4 steps**.
See our [live demo](https://huggingface.co/spaces/jasperai/flash-sd3) and official [Github repo](https://github.com/gojasper/flash-diffusion).
<p align="center">
<img style="width:700px;" src="assets/flash_sd3.png">
</p>
# How to use?
The model can be used using the `StableDiffusion3Pipeline` from `diffusers` library directly. It can allow reducing the number of required sampling steps to **4 steps**.
⚠️ First, you need to install a specific version of `diffusers` by runniung ⚠️
```bash
pip install git+https://github.com/initml/diffusers.git@clement/feature/flash_sd3
```
Then, you can run the following to generate an image
```python
import torch
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler
from peft import PeftModel
# Load LoRA
transformer = SD3Transformer2DModel.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
subfolder="transformer",
torch_dtype=torch.float16,
)
transformer = PeftModel.from_pretrained(transformer, "jasperai/flash-sd3")
# Pipeline
pipe = StableDiffusion3Pipeline.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
transformer=transformer,
torch_dtype=torch.float16,
text_encoder_3=None,
tokenizer_3=None
)
# Scheduler
pipe.scheduler = FlashFlowMatchEulerDiscreteScheduler.from_pretrained(
"stabilityai/stable-diffusion-3-medium-diffusers",
subfolder="scheduler",
)
pipe.to("cuda")
prompt = "A raccoon trapped inside a glass jar full of colorful candies, the background is steamy with vivid colors."
image = pipe(prompt, num_inference_steps=4, guidance_scale=0).images[0]
```
<p align="center">
<img style="width:400px;" src="assets/raccoon.png">
</p>
## Training details
The model was trained for ~50 hours on 2 H100 GPUs.
💡 Training Hint : Model could perform much better on text if distilled on dataset of images containing text, feel free to try it yourself.
## Citation
If you find this work useful or use it in your research, please consider citing us
```bibtex
@misc{chadebec2024flash,
title={Flash Diffusion: Accelerating Any Conditional Diffusion Model for Few Steps Image Generation},
author={Clement Chadebec and Onur Tasar and Eyal Benaroche and Benjamin Aubin},
year={2024},
eprint={2406.02347},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## License
This model is released under the the Creative Commons BY-NC license. |