javiervela
commited on
Commit
•
f55fe78
1
Parent(s):
8fb31f9
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 244.98 +/- 20.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36bb0a65e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36bb0a6670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36bb0a6700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36bb0a6790>", "_build": "<function ActorCriticPolicy._build at 0x7f36bb0a6820>", "forward": "<function ActorCriticPolicy.forward at 0x7f36bb0a68b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36bb0a6940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f36bb0a69d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36bb0a6a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36bb0a6af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36bb0a6b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f36bb09de10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670753320142098431, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABr4Eb0UaIe6CCY8uKDHLLNnR9S3PrdaNwAAgD8AAIA/kPamPvQ9hj/OEJY9bXCeviYzaD5j2QK+AAAAAAAAAAA62wY+dDunPgHVML7/3pm+PexCveNX7bsAAAAAAAAAAF14xz73K+4+nDsZvTTUXr6ECx4+QRJAvQAAAAAAAAAArUonPomFyD6GUIG9YzWCvka/Xz3ucjO9AAAAAAAAAAAN8Ls9Uq+DPGqMU7zNtA++GlAWPH7qKD0AAAAAAAAAAAAElj7n2TQ/WKR1vr44jr6rbrI9g6ZZvgAAAAAAAAAAAKgvvE4W3Lxa1S49Xe4kveWcDL3mtRG+AACAPwAAgD9mj/g8apAGP3xFEz3KAHK+iqFJPYarY70AAAAAAAAAALALpb6o/eA+Kx+IPuwLib7zcjI8NnbkOwAAAAAAAAAAAN+vPMOdebqmSE2zYOvUq/BvczuUDMEzAACAPwAAgD+zwim9N3CBP3Zf1T0WFnS+9O0+vYexgrwAAAAAAAAAAE2kNb3PDhy8MhQePYtiIj1B6YM9j9sCvgAAgD8AAIA/tptNviOdDj/6MKk9rz+cvuV9NL36JhI9AAAAAAAAAABGLAw+ABuYPv7BMb4zJTG+sdWrPASnPbwAAAAAAAAAAJpRB76VTkM/zA7BPW4+l76AKKm9sgUDPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7zzxnC0cbUCUhpRSlIwBbJRNaAGMAXSUR0CUqjL3K0UodX2UKGgGaAloD0MIZvol4q3jcECUhpRSlGgVTXUBaBZHQJSqdqXWvr51fZQoaAZoCWgPQwheS8gHPTJuQJSGlFKUaBVNWwFoFkdAlKuWP91loXV9lChoBmgJaA9DCFkV4SYjCm9AlIaUUpRoFU0tAWgWR0CUq/97WuoxdX2UKGgGaAloD0MI4297goTwcUCUhpRSlGgVTXEBaBZHQJSsLpV0cOt1fZQoaAZoCWgPQwjQQ20bRj1wQJSGlFKUaBVNbgFoFkdAlK1XV09yLnV9lChoBmgJaA9DCF0av/BK429AlIaUUpRoFU1UAWgWR0CUwP4+bExZdX2UKGgGaAloD0MImDJwQEuTP0CUhpRSlGgVS/BoFkdAlMFzRQaaTnV9lChoBmgJaA9DCATG+gam6WxAlIaUUpRoFU2QAWgWR0CUw+FRYRukdX2UKGgGaAloD0MI0LaadcY9bkCUhpRSlGgVTWMBaBZHQJTEKfg75mB1fZQoaAZoCWgPQwjBVDNrKX9tQJSGlFKUaBVNPwFoFkdAlMRezUqhDnV9lChoBmgJaA9DCBfUt8xppnBAlIaUUpRoFU1zAWgWR0CUxH0V8CxNdX2UKGgGaAloD0MIRyHJrN78b0CUhpRSlGgVTZgBaBZHQJTFmyprDZV1fZQoaAZoCWgPQwhkWTDxx8ZrQJSGlFKUaBVNXwFoFkdAlMZiCSRr8HV9lChoBmgJaA9DCBUaiGWzQXFAlIaUUpRoFU2HAWgWR0CUyPlHBk7PdX2UKGgGaAloD0MIByY3iixmcECUhpRSlGgVTUcBaBZHQJTJz/0dzXB1fZQoaAZoCWgPQwgZdhiTvplxQJSGlFKUaBVNZQFoFkdAlMnylnAZbnV9lChoBmgJaA9DCO7uAbovXGtAlIaUUpRoFU1QAWgWR0CUy55NGmUGdX2UKGgGaAloD0MIqmOV0jMnb0CUhpRSlGgVTWgBaBZHQJTMMs+V1Ol1fZQoaAZoCWgPQwjBVDNrqZpuQJSGlFKUaBVNiQFoFkdAlMw9kJ8fFXV9lChoBmgJaA9DCM2spYA0wGtAlIaUUpRoFU1IAWgWR0CUzLokzGgjdX2UKGgGaAloD0MIo+VAD3VycUCUhpRSlGgVTSYBaBZHQJTMutxMnJF1fZQoaAZoCWgPQwh0et6NhZluQJSGlFKUaBVNqQFoFkdAlM8dMwlByHV9lChoBmgJaA9DCLSu0XIg52pAlIaUUpRoFU2DAWgWR0CUz7tCiRGMdX2UKGgGaAloD0MIAoBjz17AcECUhpRSlGgVTU8BaBZHQJTQhiNKh+R1fZQoaAZoCWgPQwjhe3+D9l1sQJSGlFKUaBVNTgFoFkdAlNDFjd56dHV9lChoBmgJaA9DCCo4vCAioHBAlIaUUpRoFU1jAWgWR0CU0WUKzAvddX2UKGgGaAloD0MIe9l22pq3bkCUhpRSlGgVTWIBaBZHQJTSnGm1pkB1fZQoaAZoCWgPQwirkzMU9xJxQJSGlFKUaBVNZAFoFkdAlNOHYxtYS3V9lChoBmgJaA9DCK5+bJIfX2xAlIaUUpRoFU2vAWgWR0CU06vKEFnqdX2UKGgGaAloD0MIOEiI8oVwcECUhpRSlGgVTVgBaBZHQJTVfcHnln11fZQoaAZoCWgPQwiWzodnybxxQJSGlFKUaBVNaQFoFkdAlNb3Zf2K23V9lChoBmgJaA9DCMfZdARwKUNAlIaUUpRoFU03AWgWR0CU1044p+c6dX2UKGgGaAloD0MIa524HK+vbUCUhpRSlGgVTVABaBZHQJTX0GqxTsJ1fZQoaAZoCWgPQwhzKhkAappwQJSGlFKUaBVNNwFoFkdAlNfrOiWVvHV9lChoBmgJaA9DCNogk4wcdnBAlIaUUpRoFU2HAWgWR0CU2DWqcVgydX2UKGgGaAloD0MIuJGyRVLObECUhpRSlGgVTV0BaBZHQJTZHYg7o0R1fZQoaAZoCWgPQwgi36XUZdNwQJSGlFKUaBVNcQFoFkdAlNlNCzC1qnV9lChoBmgJaA9DCHUAxF19MHJAlIaUUpRoFU1tAWgWR0CU29K/mDDkdX2UKGgGaAloD0MIF7zoK4gjcECUhpRSlGgVTWsBaBZHQJTcXhP0qYt1fZQoaAZoCWgPQwjWUkDa/y5uQJSGlFKUaBVNfAFoFkdAlN4Adfb9InV9lChoBmgJaA9DCAHaVrNOPW1AlIaUUpRoFU2HAWgWR0CU3sNzr/sFdX2UKGgGaAloD0MIowG8BZI7bECUhpRSlGgVTXsBaBZHQJTfAFt8/lh1fZQoaAZoCWgPQwjgaMcNP0FtQJSGlFKUaBVNWgFoFkdAlN8XoxHoYHV9lChoBmgJaA9DCBA7U+i8H2tAlIaUUpRoFU1eAWgWR0CU4BcDKYAsdX2UKGgGaAloD0MIyqfHtgxGbUCUhpRSlGgVTZYBaBZHQJTibeHi3od1fZQoaAZoCWgPQwjyJVRwuK5wQJSGlFKUaBVNRQFoFkdAlOMxGQSzxHV9lChoBmgJaA9DCM7fhELEG3FAlIaUUpRoFU1jAWgWR0CU5Aw+t8u0dX2UKGgGaAloD0MIJAuYwK0hcUCUhpRSlGgVTZwBaBZHQJTk2KGcnVp1fZQoaAZoCWgPQwgGDf0THAlwQJSGlFKUaBVNZgFoFkdAlOUJmVZ9u3V9lChoBmgJaA9DCGFxOPMr9W5AlIaUUpRoFU1oAWgWR0CU5Tdq+JxedX2UKGgGaAloD0MIdeWzPI+YcECUhpRSlGgVTWEBaBZHQJTlSdupCKJ1fZQoaAZoCWgPQwiZt+o61J1uQJSGlFKUaBVNcwFoFkdAlPnHJgb6xnV9lChoBmgJaA9DCDBoIQEjLXFAlIaUUpRoFU2AAWgWR0CU+f3solUqdX2UKGgGaAloD0MI9P4/TpjTcECUhpRSlGgVTVYBaBZHQJT7QUqQRwt1fZQoaAZoCWgPQwjtDFNbaoRuQJSGlFKUaBVNZwFoFkdAlPxb4SHuZ3V9lChoBmgJaA9DCAkaM4m6CXFAlIaUUpRoFU1NAWgWR0CU/NW4EwFldX2UKGgGaAloD0MIiQlq+Jb0cECUhpRSlGgVTWcBaBZHQJT+bXpW3jN1fZQoaAZoCWgPQwiFmEuqtiRvQJSGlFKUaBVNRgFoFkdAlP6hyKekHnV9lChoBmgJaA9DCB5Td2UXLHBAlIaUUpRoFU1pAWgWR0CU/tT3Zf2LdX2UKGgGaAloD0MIy52ZYPg1cUCUhpRSlGgVTWwBaBZHQJT+3hhpg1F1fZQoaAZoCWgPQwhHPq946qlxQJSGlFKUaBVNUgFoFkdAlQE6l54W13V9lChoBmgJaA9DCDEG1nH8v2xAlIaUUpRoFU1FAWgWR0CVAXSMcZLqdX2UKGgGaAloD0MI1V3ZBQMTckCUhpRSlGgVTTIBaBZHQJUCTqcEvCd1fZQoaAZoCWgPQwj6z5of/6hsQJSGlFKUaBVNPAFoFkdAlQLgGbCrLnV9lChoBmgJaA9DCF9GsdzSJXFAlIaUUpRoFU1pAWgWR0CVA6Xw9aEBdX2UKGgGaAloD0MIkQvO4O/cbECUhpRSlGgVTUoBaBZHQJUDpstTUAl1fZQoaAZoCWgPQwiCNjl8klRwQJSGlFKUaBVNTgFoFkdAlQO1x4ptrXV9lChoBmgJaA9DCI3ROqpaI3BAlIaUUpRoFU1fAWgWR0CVBeFEy+HrdX2UKGgGaAloD0MIHLRXH8+5cECUhpRSlGgVTVoBaBZHQJUF8tbs4T91fZQoaAZoCWgPQwhup60RAfBwQJSGlFKUaBVNTwFoFkdAlQbyONo8IXV9lChoBmgJaA9DCLNBJhk5xXFAlIaUUpRoFU1VAWgWR0CVCNc/t6X0dX2UKGgGaAloD0MI1bFK6Vm7cUCUhpRSlGgVTW0BaBZHQJUJPHeaa1F1fZQoaAZoCWgPQwjI7Cx6Z2xwQJSGlFKUaBVNPQFoFkdAlQnOKfnOjnV9lChoBmgJaA9DCMAF2bL8B25AlIaUUpRoFU1aAWgWR0CVCqksjFAFdX2UKGgGaAloD0MIfO9v0B50cECUhpRSlGgVTVoBaBZHQJULE3tKIzp1fZQoaAZoCWgPQwj2C3bDNulrQJSGlFKUaBVNWgFoFkdAlQscvysjmnV9lChoBmgJaA9DCBLBOLj0SXFAlIaUUpRoFU1CAWgWR0CVDHOLBKtgdX2UKGgGaAloD0MIMSWS6OXgbUCUhpRSlGgVTUUBaBZHQJUMw0DU3GZ1fZQoaAZoCWgPQwgOg/krpKlwQJSGlFKUaBVNPQFoFkdAlQ0y3solU3V9lChoBmgJaA9DCFmLTwEwenFAlIaUUpRoFU0wAWgWR0CVDUU96kZadX2UKGgGaAloD0MIYd9OIsJdb0CUhpRSlGgVTTUBaBZHQJUOBhhH9WJ1fZQoaAZoCWgPQwiEZWzo5ndwQJSGlFKUaBVNNwFoFkdAlQ4h3qzJIXV9lChoBmgJaA9DCNI5P8XxjWxAlIaUUpRoFU1eAWgWR0CVDz2ugYgrdX2UKGgGaAloD0MIo+nsZHBCckCUhpRSlGgVTUgBaBZHQJUQ590A93d1fZQoaAZoCWgPQwgT1sbYCQZwQJSGlFKUaBVNNgFoFkdAlRFecx0uDnV9lChoBmgJaA9DCH6pnzdVo3JAlIaUUpRoFU1tAWgWR0CVEkJPIn0DdX2UKGgGaAloD0MIJHuEmqF7bkCUhpRSlGgVTTwBaBZHQJUTZAv+OwR1fZQoaAZoCWgPQwhNZrytdLVxQJSGlFKUaBVNMQFoFkdAlRPvqxC6YnV9lChoBmgJaA9DCEyo4PCCcG5AlIaUUpRoFU1FAWgWR0CVFY5NXYDldX2UKGgGaAloD0MILpJ2o484cUCUhpRSlGgVTVgBaBZHQJUWu5f+jud1fZQoaAZoCWgPQwjsMvynmzRyQJSGlFKUaBVNjQFoFkdAlRbaL0jC53V9lChoBmgJaA9DCK01lNqLAHFAlIaUUpRoFU1kAWgWR0CVFyjxTbWVdX2UKGgGaAloD0MIC5sBLojpcUCUhpRSlGgVTTkBaBZHQJUXKfbsWwh1fZQoaAZoCWgPQwiUF5mA3wBrQJSGlFKUaBVNMwFoFkdAlRe6lgtvoHV9lChoBmgJaA9DCD6Skh6G5HFAlIaUUpRoFU0bAWgWR0CVF9oWYWtVdX2UKGgGaAloD0MIOIJUip01ckCUhpRSlGgVTWcBaBZHQJUY8MWoFV11fZQoaAZoCWgPQwjAIVSpWb9tQJSGlFKUaBVNYgFoFkdAlRlK5f+junV9lChoBmgJaA9DCDsah/pdlHBAlIaUUpRoFU1HAWgWR0CVGWE3Kji5dX2UKGgGaAloD0MIlN43vvb5bECUhpRSlGgVTTIBaBZHQJUZzLQokRl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee8d859f58c847d51ed67ab5fd6fceb9a5e0c09065ac3cadc324dd1ba0894bc4
|
3 |
+
size 147218
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f36bb0a65e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36bb0a6670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36bb0a6700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36bb0a6790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f36bb0a6820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f36bb0a68b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36bb0a6940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f36bb0a69d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36bb0a6a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36bb0a6af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36bb0a6b80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f36bb09de10>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670753320142098431,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABr4Eb0UaIe6CCY8uKDHLLNnR9S3PrdaNwAAgD8AAIA/kPamPvQ9hj/OEJY9bXCeviYzaD5j2QK+AAAAAAAAAAA62wY+dDunPgHVML7/3pm+PexCveNX7bsAAAAAAAAAAF14xz73K+4+nDsZvTTUXr6ECx4+QRJAvQAAAAAAAAAArUonPomFyD6GUIG9YzWCvka/Xz3ucjO9AAAAAAAAAAAN8Ls9Uq+DPGqMU7zNtA++GlAWPH7qKD0AAAAAAAAAAAAElj7n2TQ/WKR1vr44jr6rbrI9g6ZZvgAAAAAAAAAAAKgvvE4W3Lxa1S49Xe4kveWcDL3mtRG+AACAPwAAgD9mj/g8apAGP3xFEz3KAHK+iqFJPYarY70AAAAAAAAAALALpb6o/eA+Kx+IPuwLib7zcjI8NnbkOwAAAAAAAAAAAN+vPMOdebqmSE2zYOvUq/BvczuUDMEzAACAPwAAgD+zwim9N3CBP3Zf1T0WFnS+9O0+vYexgrwAAAAAAAAAAE2kNb3PDhy8MhQePYtiIj1B6YM9j9sCvgAAgD8AAIA/tptNviOdDj/6MKk9rz+cvuV9NL36JhI9AAAAAAAAAABGLAw+ABuYPv7BMb4zJTG+sdWrPASnPbwAAAAAAAAAAJpRB76VTkM/zA7BPW4+l76AKKm9sgUDPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7zzxnC0cbUCUhpRSlIwBbJRNaAGMAXSUR0CUqjL3K0UodX2UKGgGaAloD0MIZvol4q3jcECUhpRSlGgVTXUBaBZHQJSqdqXWvr51fZQoaAZoCWgPQwheS8gHPTJuQJSGlFKUaBVNWwFoFkdAlKuWP91loXV9lChoBmgJaA9DCFkV4SYjCm9AlIaUUpRoFU0tAWgWR0CUq/97WuoxdX2UKGgGaAloD0MI4297goTwcUCUhpRSlGgVTXEBaBZHQJSsLpV0cOt1fZQoaAZoCWgPQwjQQ20bRj1wQJSGlFKUaBVNbgFoFkdAlK1XV09yLnV9lChoBmgJaA9DCF0av/BK429AlIaUUpRoFU1UAWgWR0CUwP4+bExZdX2UKGgGaAloD0MImDJwQEuTP0CUhpRSlGgVS/BoFkdAlMFzRQaaTnV9lChoBmgJaA9DCATG+gam6WxAlIaUUpRoFU2QAWgWR0CUw+FRYRukdX2UKGgGaAloD0MI0LaadcY9bkCUhpRSlGgVTWMBaBZHQJTEKfg75mB1fZQoaAZoCWgPQwjBVDNrKX9tQJSGlFKUaBVNPwFoFkdAlMRezUqhDnV9lChoBmgJaA9DCBfUt8xppnBAlIaUUpRoFU1zAWgWR0CUxH0V8CxNdX2UKGgGaAloD0MIRyHJrN78b0CUhpRSlGgVTZgBaBZHQJTFmyprDZV1fZQoaAZoCWgPQwhkWTDxx8ZrQJSGlFKUaBVNXwFoFkdAlMZiCSRr8HV9lChoBmgJaA9DCBUaiGWzQXFAlIaUUpRoFU2HAWgWR0CUyPlHBk7PdX2UKGgGaAloD0MIByY3iixmcECUhpRSlGgVTUcBaBZHQJTJz/0dzXB1fZQoaAZoCWgPQwgZdhiTvplxQJSGlFKUaBVNZQFoFkdAlMnylnAZbnV9lChoBmgJaA9DCO7uAbovXGtAlIaUUpRoFU1QAWgWR0CUy55NGmUGdX2UKGgGaAloD0MIqmOV0jMnb0CUhpRSlGgVTWgBaBZHQJTMMs+V1Ol1fZQoaAZoCWgPQwjBVDNrqZpuQJSGlFKUaBVNiQFoFkdAlMw9kJ8fFXV9lChoBmgJaA9DCM2spYA0wGtAlIaUUpRoFU1IAWgWR0CUzLokzGgjdX2UKGgGaAloD0MIo+VAD3VycUCUhpRSlGgVTSYBaBZHQJTMutxMnJF1fZQoaAZoCWgPQwh0et6NhZluQJSGlFKUaBVNqQFoFkdAlM8dMwlByHV9lChoBmgJaA9DCLSu0XIg52pAlIaUUpRoFU2DAWgWR0CUz7tCiRGMdX2UKGgGaAloD0MIAoBjz17AcECUhpRSlGgVTU8BaBZHQJTQhiNKh+R1fZQoaAZoCWgPQwjhe3+D9l1sQJSGlFKUaBVNTgFoFkdAlNDFjd56dHV9lChoBmgJaA9DCCo4vCAioHBAlIaUUpRoFU1jAWgWR0CU0WUKzAvddX2UKGgGaAloD0MIe9l22pq3bkCUhpRSlGgVTWIBaBZHQJTSnGm1pkB1fZQoaAZoCWgPQwirkzMU9xJxQJSGlFKUaBVNZAFoFkdAlNOHYxtYS3V9lChoBmgJaA9DCK5+bJIfX2xAlIaUUpRoFU2vAWgWR0CU06vKEFnqdX2UKGgGaAloD0MIOEiI8oVwcECUhpRSlGgVTVgBaBZHQJTVfcHnln11fZQoaAZoCWgPQwiWzodnybxxQJSGlFKUaBVNaQFoFkdAlNb3Zf2K23V9lChoBmgJaA9DCMfZdARwKUNAlIaUUpRoFU03AWgWR0CU1044p+c6dX2UKGgGaAloD0MIa524HK+vbUCUhpRSlGgVTVABaBZHQJTX0GqxTsJ1fZQoaAZoCWgPQwhzKhkAappwQJSGlFKUaBVNNwFoFkdAlNfrOiWVvHV9lChoBmgJaA9DCNogk4wcdnBAlIaUUpRoFU2HAWgWR0CU2DWqcVgydX2UKGgGaAloD0MIuJGyRVLObECUhpRSlGgVTV0BaBZHQJTZHYg7o0R1fZQoaAZoCWgPQwgi36XUZdNwQJSGlFKUaBVNcQFoFkdAlNlNCzC1qnV9lChoBmgJaA9DCHUAxF19MHJAlIaUUpRoFU1tAWgWR0CU29K/mDDkdX2UKGgGaAloD0MIF7zoK4gjcECUhpRSlGgVTWsBaBZHQJTcXhP0qYt1fZQoaAZoCWgPQwjWUkDa/y5uQJSGlFKUaBVNfAFoFkdAlN4Adfb9InV9lChoBmgJaA9DCAHaVrNOPW1AlIaUUpRoFU2HAWgWR0CU3sNzr/sFdX2UKGgGaAloD0MIowG8BZI7bECUhpRSlGgVTXsBaBZHQJTfAFt8/lh1fZQoaAZoCWgPQwjgaMcNP0FtQJSGlFKUaBVNWgFoFkdAlN8XoxHoYHV9lChoBmgJaA9DCBA7U+i8H2tAlIaUUpRoFU1eAWgWR0CU4BcDKYAsdX2UKGgGaAloD0MIyqfHtgxGbUCUhpRSlGgVTZYBaBZHQJTibeHi3od1fZQoaAZoCWgPQwjyJVRwuK5wQJSGlFKUaBVNRQFoFkdAlOMxGQSzxHV9lChoBmgJaA9DCM7fhELEG3FAlIaUUpRoFU1jAWgWR0CU5Aw+t8u0dX2UKGgGaAloD0MIJAuYwK0hcUCUhpRSlGgVTZwBaBZHQJTk2KGcnVp1fZQoaAZoCWgPQwgGDf0THAlwQJSGlFKUaBVNZgFoFkdAlOUJmVZ9u3V9lChoBmgJaA9DCGFxOPMr9W5AlIaUUpRoFU1oAWgWR0CU5Tdq+JxedX2UKGgGaAloD0MIdeWzPI+YcECUhpRSlGgVTWEBaBZHQJTlSdupCKJ1fZQoaAZoCWgPQwiZt+o61J1uQJSGlFKUaBVNcwFoFkdAlPnHJgb6xnV9lChoBmgJaA9DCDBoIQEjLXFAlIaUUpRoFU2AAWgWR0CU+f3solUqdX2UKGgGaAloD0MI9P4/TpjTcECUhpRSlGgVTVYBaBZHQJT7QUqQRwt1fZQoaAZoCWgPQwjtDFNbaoRuQJSGlFKUaBVNZwFoFkdAlPxb4SHuZ3V9lChoBmgJaA9DCAkaM4m6CXFAlIaUUpRoFU1NAWgWR0CU/NW4EwFldX2UKGgGaAloD0MIiQlq+Jb0cECUhpRSlGgVTWcBaBZHQJT+bXpW3jN1fZQoaAZoCWgPQwiFmEuqtiRvQJSGlFKUaBVNRgFoFkdAlP6hyKekHnV9lChoBmgJaA9DCB5Td2UXLHBAlIaUUpRoFU1pAWgWR0CU/tT3Zf2LdX2UKGgGaAloD0MIy52ZYPg1cUCUhpRSlGgVTWwBaBZHQJT+3hhpg1F1fZQoaAZoCWgPQwhHPq946qlxQJSGlFKUaBVNUgFoFkdAlQE6l54W13V9lChoBmgJaA9DCDEG1nH8v2xAlIaUUpRoFU1FAWgWR0CVAXSMcZLqdX2UKGgGaAloD0MI1V3ZBQMTckCUhpRSlGgVTTIBaBZHQJUCTqcEvCd1fZQoaAZoCWgPQwj6z5of/6hsQJSGlFKUaBVNPAFoFkdAlQLgGbCrLnV9lChoBmgJaA9DCF9GsdzSJXFAlIaUUpRoFU1pAWgWR0CVA6Xw9aEBdX2UKGgGaAloD0MIkQvO4O/cbECUhpRSlGgVTUoBaBZHQJUDpstTUAl1fZQoaAZoCWgPQwiCNjl8klRwQJSGlFKUaBVNTgFoFkdAlQO1x4ptrXV9lChoBmgJaA9DCI3ROqpaI3BAlIaUUpRoFU1fAWgWR0CVBeFEy+HrdX2UKGgGaAloD0MIHLRXH8+5cECUhpRSlGgVTVoBaBZHQJUF8tbs4T91fZQoaAZoCWgPQwhup60RAfBwQJSGlFKUaBVNTwFoFkdAlQbyONo8IXV9lChoBmgJaA9DCLNBJhk5xXFAlIaUUpRoFU1VAWgWR0CVCNc/t6X0dX2UKGgGaAloD0MI1bFK6Vm7cUCUhpRSlGgVTW0BaBZHQJUJPHeaa1F1fZQoaAZoCWgPQwjI7Cx6Z2xwQJSGlFKUaBVNPQFoFkdAlQnOKfnOjnV9lChoBmgJaA9DCMAF2bL8B25AlIaUUpRoFU1aAWgWR0CVCqksjFAFdX2UKGgGaAloD0MIfO9v0B50cECUhpRSlGgVTVoBaBZHQJULE3tKIzp1fZQoaAZoCWgPQwj2C3bDNulrQJSGlFKUaBVNWgFoFkdAlQscvysjmnV9lChoBmgJaA9DCBLBOLj0SXFAlIaUUpRoFU1CAWgWR0CVDHOLBKtgdX2UKGgGaAloD0MIMSWS6OXgbUCUhpRSlGgVTUUBaBZHQJUMw0DU3GZ1fZQoaAZoCWgPQwgOg/krpKlwQJSGlFKUaBVNPQFoFkdAlQ0y3solU3V9lChoBmgJaA9DCFmLTwEwenFAlIaUUpRoFU0wAWgWR0CVDUU96kZadX2UKGgGaAloD0MIYd9OIsJdb0CUhpRSlGgVTTUBaBZHQJUOBhhH9WJ1fZQoaAZoCWgPQwiEZWzo5ndwQJSGlFKUaBVNNwFoFkdAlQ4h3qzJIXV9lChoBmgJaA9DCNI5P8XxjWxAlIaUUpRoFU1eAWgWR0CVDz2ugYgrdX2UKGgGaAloD0MIo+nsZHBCckCUhpRSlGgVTUgBaBZHQJUQ590A93d1fZQoaAZoCWgPQwgT1sbYCQZwQJSGlFKUaBVNNgFoFkdAlRFecx0uDnV9lChoBmgJaA9DCH6pnzdVo3JAlIaUUpRoFU1tAWgWR0CVEkJPIn0DdX2UKGgGaAloD0MIJHuEmqF7bkCUhpRSlGgVTTwBaBZHQJUTZAv+OwR1fZQoaAZoCWgPQwhNZrytdLVxQJSGlFKUaBVNMQFoFkdAlRPvqxC6YnV9lChoBmgJaA9DCEyo4PCCcG5AlIaUUpRoFU1FAWgWR0CVFY5NXYDldX2UKGgGaAloD0MILpJ2o484cUCUhpRSlGgVTVgBaBZHQJUWu5f+jud1fZQoaAZoCWgPQwjsMvynmzRyQJSGlFKUaBVNjQFoFkdAlRbaL0jC53V9lChoBmgJaA9DCK01lNqLAHFAlIaUUpRoFU1kAWgWR0CVFyjxTbWVdX2UKGgGaAloD0MIC5sBLojpcUCUhpRSlGgVTTkBaBZHQJUXKfbsWwh1fZQoaAZoCWgPQwiUF5mA3wBrQJSGlFKUaBVNMwFoFkdAlRe6lgtvoHV9lChoBmgJaA9DCD6Skh6G5HFAlIaUUpRoFU0bAWgWR0CVF9oWYWtVdX2UKGgGaAloD0MIOIJUip01ckCUhpRSlGgVTWcBaBZHQJUY8MWoFV11fZQoaAZoCWgPQwjAIVSpWb9tQJSGlFKUaBVNYgFoFkdAlRlK5f+junV9lChoBmgJaA9DCDsah/pdlHBAlIaUUpRoFU1HAWgWR0CVGWE3Kji5dX2UKGgGaAloD0MIlN43vvb5bECUhpRSlGgVTTIBaBZHQJUZzLQokRl1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6362d4b0a01e26e1151cf428d38588ef9da6d470ac05a9f809eabd96a590ef30
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52279bc6eefd02ac58fb999524a0046cd4403a3065a8dc266477b64b36d1c86f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (204 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 244.9837324708788, "std_reward": 20.13518237102379, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-11T10:31:18.349732"}
|