paul
commited on
Commit
•
872b113
1
Parent(s):
aa3ec22
update model card README.md
Browse files
README.md
CHANGED
@@ -18,20 +18,22 @@ model-index:
|
|
18 |
dataset:
|
19 |
name: imagefolder
|
20 |
type: imagefolder
|
|
|
|
|
21 |
args: default
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
---
|
36 |
|
37 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
43 |
It achieves the following results on the evaluation set:
|
44 |
-
- Loss: 0.
|
45 |
-
- Accuracy: 0.
|
46 |
-
- Precision: 0.
|
47 |
-
- Recall: 0.
|
48 |
-
- F1: 0.
|
49 |
|
50 |
## Model description
|
51 |
|
@@ -73,37 +75,27 @@ The following hyperparameters were used during training:
|
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
- lr_scheduler_warmup_ratio: 0.1
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
82 |
-
| No log | 0.97 | 8 |
|
83 |
-
| 1.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.0215 | 10.97 | 88 | 0.3946 | 0.8899 | 0.8901 | 0.8899 | 0.8896 |
|
93 |
-
| 0.0201 | 11.97 | 96 | 0.4505 | 0.8532 | 0.8558 | 0.8532 | 0.8524 |
|
94 |
-
| 0.02 | 12.97 | 104 | 0.4543 | 0.8716 | 0.8734 | 0.8716 | 0.8718 |
|
95 |
-
| 0.0181 | 13.97 | 112 | 0.3837 | 0.8899 | 0.8878 | 0.8899 | 0.8884 |
|
96 |
-
| 0.0158 | 14.97 | 120 | 0.3904 | 0.8716 | 0.8676 | 0.8716 | 0.8691 |
|
97 |
-
| 0.0158 | 15.97 | 128 | 0.3881 | 0.9083 | 0.9078 | 0.9083 | 0.9077 |
|
98 |
-
| 0.0147 | 16.97 | 136 | 0.4233 | 0.8807 | 0.8773 | 0.8807 | 0.8785 |
|
99 |
-
| 0.0138 | 17.97 | 144 | 0.4335 | 0.8716 | 0.8700 | 0.8716 | 0.8707 |
|
100 |
-
| 0.0166 | 18.97 | 152 | 0.4492 | 0.8716 | 0.8690 | 0.8716 | 0.8701 |
|
101 |
-
| 0.016 | 19.97 | 160 | 0.4170 | 0.8716 | 0.8725 | 0.8716 | 0.8717 |
|
102 |
|
103 |
|
104 |
### Framework versions
|
105 |
|
106 |
-
- Transformers 4.
|
107 |
- Pytorch 1.13.1+cu117
|
108 |
-
- Datasets 2.
|
109 |
- Tokenizers 0.11.0
|
|
|
18 |
dataset:
|
19 |
name: imagefolder
|
20 |
type: imagefolder
|
21 |
+
config: default
|
22 |
+
split: train
|
23 |
args: default
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.8807339449541285
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.8768597487153273
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.8807339449541285
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
+
value: 0.8782945902988435
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3706
|
47 |
+
- Accuracy: 0.8807
|
48 |
+
- Precision: 0.8769
|
49 |
+
- Recall: 0.8807
|
50 |
+
- F1: 0.8783
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
75 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
- lr_scheduler_type: linear
|
77 |
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 10
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
84 |
+
| No log | 0.97 | 8 | 0.9902 | 0.5596 | 0.5506 | 0.5596 | 0.5360 |
|
85 |
+
| 1.242 | 1.97 | 16 | 0.5157 | 0.8165 | 0.8195 | 0.8165 | 0.8132 |
|
86 |
+
| 0.4438 | 2.97 | 24 | 0.3871 | 0.8440 | 0.8516 | 0.8440 | 0.8446 |
|
87 |
+
| 0.1768 | 3.97 | 32 | 0.3531 | 0.8624 | 0.8653 | 0.8624 | 0.8585 |
|
88 |
+
| 0.0661 | 4.97 | 40 | 0.3780 | 0.8716 | 0.8693 | 0.8716 | 0.8674 |
|
89 |
+
| 0.0661 | 5.97 | 48 | 0.3747 | 0.8624 | 0.8649 | 0.8624 | 0.8632 |
|
90 |
+
| 0.0375 | 6.97 | 56 | 0.3760 | 0.8991 | 0.8961 | 0.8991 | 0.8971 |
|
91 |
+
| 0.0362 | 7.97 | 64 | 0.4092 | 0.8716 | 0.8684 | 0.8716 | 0.8681 |
|
92 |
+
| 0.0322 | 8.97 | 72 | 0.3499 | 0.8899 | 0.8880 | 0.8899 | 0.8888 |
|
93 |
+
| 0.029 | 9.97 | 80 | 0.3706 | 0.8807 | 0.8769 | 0.8807 | 0.8783 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
### Framework versions
|
97 |
|
98 |
+
- Transformers 4.25.1
|
99 |
- Pytorch 1.13.1+cu117
|
100 |
+
- Datasets 2.8.0
|
101 |
- Tokenizers 0.11.0
|