paul commited on
Commit
b3cfde9
1 Parent(s): 353a9d7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +111 -0
README.md ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ - precision
10
+ - recall
11
+ - f1
12
+ model-index:
13
+ - name: mit-b2-fv-finetuned-memes
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: train
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.8323029366306027
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.831217385971583
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.8323029366306027
34
+ - name: F1
35
+ type: f1
36
+ value: 0.831492653119617
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # mit-b2-fv-finetuned-memes
43
+
44
+ This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the imagefolder dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.5984
47
+ - Accuracy: 0.8323
48
+ - Precision: 0.8312
49
+ - Recall: 0.8323
50
+ - F1: 0.8315
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 0.00012
70
+ - train_batch_size: 64
71
+ - eval_batch_size: 64
72
+ - seed: 42
73
+ - gradient_accumulation_steps: 4
74
+ - total_train_batch_size: 256
75
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 20
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
83
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
84
+ | 1.3683 | 0.99 | 20 | 1.1798 | 0.5703 | 0.4914 | 0.5703 | 0.4915 |
85
+ | 1.0113 | 1.99 | 40 | 1.0384 | 0.6159 | 0.6813 | 0.6159 | 0.6274 |
86
+ | 0.7581 | 2.99 | 60 | 0.8348 | 0.6808 | 0.7377 | 0.6808 | 0.6840 |
87
+ | 0.6241 | 3.99 | 80 | 0.6034 | 0.7713 | 0.7864 | 0.7713 | 0.7735 |
88
+ | 0.4999 | 4.99 | 100 | 0.5481 | 0.7944 | 0.8000 | 0.7944 | 0.7909 |
89
+ | 0.3981 | 5.99 | 120 | 0.5253 | 0.8022 | 0.8091 | 0.8022 | 0.8000 |
90
+ | 0.3484 | 6.99 | 140 | 0.4688 | 0.8238 | 0.8147 | 0.8238 | 0.8146 |
91
+ | 0.3142 | 7.99 | 160 | 0.6245 | 0.7867 | 0.8209 | 0.7867 | 0.7920 |
92
+ | 0.2339 | 8.99 | 180 | 0.5053 | 0.8362 | 0.8426 | 0.8362 | 0.8355 |
93
+ | 0.2284 | 9.99 | 200 | 0.5070 | 0.8230 | 0.8220 | 0.8230 | 0.8187 |
94
+ | 0.1824 | 10.99 | 220 | 0.5780 | 0.8006 | 0.8138 | 0.8006 | 0.8035 |
95
+ | 0.1561 | 11.99 | 240 | 0.5429 | 0.8253 | 0.8197 | 0.8253 | 0.8218 |
96
+ | 0.1229 | 12.99 | 260 | 0.5325 | 0.8331 | 0.8296 | 0.8331 | 0.8303 |
97
+ | 0.1232 | 13.99 | 280 | 0.5595 | 0.8277 | 0.8290 | 0.8277 | 0.8273 |
98
+ | 0.118 | 14.99 | 300 | 0.5974 | 0.8292 | 0.8345 | 0.8292 | 0.8299 |
99
+ | 0.11 | 15.99 | 320 | 0.5796 | 0.8253 | 0.8228 | 0.8253 | 0.8231 |
100
+ | 0.0948 | 16.99 | 340 | 0.5581 | 0.8346 | 0.8358 | 0.8346 | 0.8349 |
101
+ | 0.0985 | 17.99 | 360 | 0.5700 | 0.8338 | 0.8301 | 0.8338 | 0.8318 |
102
+ | 0.0821 | 18.99 | 380 | 0.5756 | 0.8331 | 0.8343 | 0.8331 | 0.8335 |
103
+ | 0.0813 | 19.99 | 400 | 0.5984 | 0.8323 | 0.8312 | 0.8323 | 0.8315 |
104
+
105
+
106
+ ### Framework versions
107
+
108
+ - Transformers 4.24.0.dev0
109
+ - Pytorch 1.11.0+cu102
110
+ - Datasets 2.6.1.dev0
111
+ - Tokenizers 0.13.1