File size: 3,569 Bytes
37eef19 dbcd747 37eef19 dbcd747 37eef19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: other
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: mobilenet_v2_1.0_224-cxr-view
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.929384965831435
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mobilenet_v2_1.0_224-cxr-view
This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2278
- Accuracy: 0.9294
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7049 | 1.0 | 109 | 0.6746 | 0.7449 |
| 0.6565 | 2.0 | 219 | 0.6498 | 0.6743 |
| 0.5699 | 3.0 | 328 | 0.5730 | 0.7995 |
| 0.5702 | 4.0 | 438 | 0.5119 | 0.8087 |
| 0.4849 | 5.0 | 547 | 0.4356 | 0.8679 |
| 0.356 | 6.0 | 657 | 0.4641 | 0.8087 |
| 0.3713 | 7.0 | 766 | 0.3407 | 0.8679 |
| 0.4571 | 8.0 | 876 | 0.4896 | 0.7813 |
| 0.3896 | 9.0 | 985 | 0.3124 | 0.8884 |
| 0.3422 | 10.0 | 1095 | 0.2791 | 0.9271 |
| 0.3358 | 11.0 | 1204 | 0.3998 | 0.8246 |
| 0.3658 | 12.0 | 1314 | 0.2716 | 0.9066 |
| 0.4547 | 13.0 | 1423 | 0.5828 | 0.7973 |
| 0.2615 | 14.0 | 1533 | 0.3446 | 0.8542 |
| 0.377 | 15.0 | 1642 | 0.6322 | 0.7312 |
| 0.2846 | 16.0 | 1752 | 0.2621 | 0.9248 |
| 0.3433 | 17.0 | 1861 | 0.3709 | 0.8383 |
| 0.2851 | 18.0 | 1971 | 0.8134 | 0.7312 |
| 0.2298 | 19.0 | 2080 | 0.4324 | 0.8314 |
| 0.3916 | 20.0 | 2190 | 0.3631 | 0.8360 |
| 0.3049 | 21.0 | 2299 | 0.3405 | 0.8633 |
| 0.3068 | 22.0 | 2409 | 0.2585 | 0.9021 |
| 0.3091 | 23.0 | 2518 | 0.2278 | 0.9294 |
| 0.2749 | 24.0 | 2628 | 0.2963 | 0.9043 |
| 0.3543 | 25.0 | 2737 | 0.2637 | 0.8975 |
| 0.3024 | 26.0 | 2847 | 0.2966 | 0.8998 |
| 0.2593 | 27.0 | 2956 | 0.3842 | 0.8542 |
| 0.1979 | 28.0 | 3066 | 0.2711 | 0.8884 |
| 0.2549 | 29.0 | 3175 | 0.3145 | 0.8633 |
| 0.3216 | 29.86 | 3270 | 0.4565 | 0.8155 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
|