a2c-PandaReachDense-v2 / config.json
jaybeeja's picture
Initial commit
d9c0d4f
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe68b787310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe68b7fafc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680237047507332865, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVlgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZC9ob21lL2pvaG5lYmxha2UvbWFtYmFmb3JnZS9lbnZzL3VuaXQ2L2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFAj9PjJZzztjcwk/FAj9PjJZzztjcwk/FAj9PjJZzztjcwk/FAj9PjJZzztjcwk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAk9t5P5fEgj9Uctq/zqSqv3cBcj+gtJK7nr1Rv+Rp2L+proM/OVkrPtVUq78Zvwk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAUCP0+MlnPO2NzCT9sqqs84J23uzJZkzwUCP0+MlnPO2NzCT9sqqs84J23uzJZkzwUCP0+MlnPO2NzCT9sqqs84J23uzJZkzwUCP0+MlnPO2NzCT9sqqs84J23uzJZkzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.49420226 0.00632777 0.5369169 ]\n [0.49420226 0.00632777 0.5369169 ]\n [0.49420226 0.00632777 0.5369169 ]\n [0.49420226 0.00632777 0.5369169 ]]", "desired_goal": "[[ 0.9760067 1.0216244 -1.706614 ]\n [-1.3331544 0.94533485 -0.0044771 ]\n [-0.8192996 -1.6907315 1.0287677 ]\n [ 0.16733254 -1.3385264 0.53807217]]", "observation": "[[ 0.49420226 0.00632777 0.5369169 0.02095529 -0.00560354 0.01798687]\n [ 0.49420226 0.00632777 0.5369169 0.02095529 -0.00560354 0.01798687]\n [ 0.49420226 0.00632777 0.5369169 0.02095529 -0.00560354 0.01798687]\n [ 0.49420226 0.00632777 0.5369169 0.02095529 -0.00560354 0.01798687]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEu33Pa0rsj31fQ0+noD5PUbYAD7VQPM9WGKZPAGSbT0HRZI+b3QUvckFE71uPh49lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12105764 0.08699737 0.1381758 ]\n [ 0.12182735 0.12582502 0.118776 ]\n [ 0.01872365 0.05800057 0.2856829 ]\n [-0.03624385 -0.03589419 0.03863376]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIADeLFwvjHcCUhpRSlIwBbJRLMowBdJRHQLpE9gmZ3LV1fZQoaAZoCWgPQwhqoPmcu30VwJSGlFKUaBVLMmgWR0C6RNZAyEcsdX2UKGgGaAloD0MId0zdlV1QB8CUhpRSlGgVSzJoFkdAukSyy8jAz3V9lChoBmgJaA9DCDXvOEVHEhPAlIaUUpRoFUsyaBZHQLpEV2ys0YV1fZQoaAZoCWgPQwiw4lRrYWYawJSGlFKUaBVLMmgWR0C6RV7xqfvndX2UKGgGaAloD0MI6lvmdFlsHcCUhpRSlGgVSzJoFkdAukU/Ikqto3V9lChoBmgJaA9DCEP/BBcrOhrAlIaUUpRoFUsyaBZHQLpFG7gsK9h1fZQoaAZoCWgPQwhPBkfJq0MQwJSGlFKUaBVLMmgWR0C6RMBhH9WIdX2UKGgGaAloD0MIgLvs152eGcCUhpRSlGgVSzJoFkdAukXOG1x82XV9lChoBmgJaA9DCMzwn26g+CHAlIaUUpRoFUsyaBZHQLpFrj9n9Nx1fZQoaAZoCWgPQwjKbmb0ozEpwJSGlFKUaBVLMmgWR0C6RYrC3w1BdX2UKGgGaAloD0MITrhX5q26HcCUhpRSlGgVSzJoFkdAukUvZrYXf3V9lChoBmgJaA9DCNFXkGYsyhzAlIaUUpRoFUsyaBZHQLpGPr6+FlF1fZQoaAZoCWgPQwjvq3Kh8rcjwJSGlFKUaBVLMmgWR0C6Rh78ejmCdX2UKGgGaAloD0MIC7YRT3ajIcCUhpRSlGgVSzJoFkdAukX7h2nsLXV9lChoBmgJaA9DCL5qZcIv5SbAlIaUUpRoFUsyaBZHQLpFoC0ngHh1fZQoaAZoCWgPQwhNEHUfgGwiwJSGlFKUaBVLMmgWR0C6RqtLlFMJdX2UKGgGaAloD0MIfGKdKt/zDsCUhpRSlGgVSzJoFkdAukaLjHXEqHV9lChoBmgJaA9DCPLrh9hgYQvAlIaUUpRoFUsyaBZHQLpGaEovzvt1fZQoaAZoCWgPQwggJXZtb6cWwJSGlFKUaBVLMmgWR0C6Rg0IomXxdX2UKGgGaAloD0MILnO6LCZWJMCUhpRSlGgVSzJoFkdAukcRqQA+6nV9lChoBmgJaA9DCDnsvmN47BTAlIaUUpRoFUsyaBZHQLpG8drftQd1fZQoaAZoCWgPQwitTPilfn4UwJSGlFKUaBVLMmgWR0C6Rs5lnRLLdX2UKGgGaAloD0MItcU1PpP9FMCUhpRSlGgVSzJoFkdAukZzCO3lS3V9lChoBmgJaA9DCOVk4lZBPBjAlIaUUpRoFUsyaBZHQLpHe/wy6+Z1fZQoaAZoCWgPQwiySBPvAE8NwJSGlFKUaBVLMmgWR0C6R1wq/dqMdX2UKGgGaAloD0MI8ItLVdoCDMCUhpRSlGgVSzJoFkdAukc42YOUdXV9lChoBmgJaA9DCPc+VYUG4gjAlIaUUpRoFUsyaBZHQLpG3YigTRJ1fZQoaAZoCWgPQwhwBn+/mHUiwJSGlFKUaBVLMmgWR0C6R+qYu01JdX2UKGgGaAloD0MIrabria6rGcCUhpRSlGgVSzJoFkdAukfKxfOUuHV9lChoBmgJaA9DCFgfD313qx3AlIaUUpRoFUsyaBZHQLpHp2b5M111fZQoaAZoCWgPQwix3T1A9+0swJSGlFKUaBVLMmgWR0C6R0wiiZfEdX2UKGgGaAloD0MIeT2YFB9/DMCUhpRSlGgVSzJoFkdAukhSZ/kNnXV9lChoBmgJaA9DCI+JlGbzYCXAlIaUUpRoFUsyaBZHQLpIMoAGSp11fZQoaAZoCWgPQwjtgVZgyIoIwJSGlFKUaBVLMmgWR0C6SA8JD3M7dX2UKGgGaAloD0MIDCB8KNHiFcCUhpRSlGgVSzJoFkdAukezy+YdAHV9lChoBmgJaA9DCONTAIxncBDAlIaUUpRoFUsyaBZHQLpIt4Qz1sd1fZQoaAZoCWgPQwjaPA6D+WsfwJSGlFKUaBVLMmgWR0C6SJegxrSFdX2UKGgGaAloD0MIbt+j/nqtKcCUhpRSlGgVSzJoFkdAukh0LeANG3V9lChoBmgJaA9DCOMZNPRPEBHAlIaUUpRoFUsyaBZHQLpIGNyYG+t1fZQoaAZoCWgPQwg3FhQGZToRwJSGlFKUaBVLMmgWR0C6SR6nvUjLdX2UKGgGaAloD0MIJhx6i4e3F8CUhpRSlGgVSzJoFkdAukj+xgRbr3V9lChoBmgJaA9DCHQn2H+duxnAlIaUUpRoFUsyaBZHQLpI20th/iJ1fZQoaAZoCWgPQwiyYyMQr3sRwJSGlFKUaBVLMmgWR0C6SIAKBun/dX2UKGgGaAloD0MIrDb/rzqyFsCUhpRSlGgVSzJoFkdAukmAIhQm/nV9lChoBmgJaA9DCHBAS1ewjR/AlIaUUpRoFUsyaBZHQLpJYD6WPcV1fZQoaAZoCWgPQwhIb7iP3OoawJSGlFKUaBVLMmgWR0C6STzj3mFKdX2UKGgGaAloD0MISE+RQ8Q9J8CUhpRSlGgVSzJoFkdAukjhlBhQWXV9lChoBmgJaA9DCBaE8j6OFhvAlIaUUpRoFUsyaBZHQLpJ4QN0/4Z1fZQoaAZoCWgPQwipLuBlhi0ZwJSGlFKUaBVLMmgWR0C6ScEu14PgdX2UKGgGaAloD0MItTLhl/qxIsCUhpRSlGgVSzJoFkdAukmdsbedkXV9lChoBmgJaA9DCNfbZirEAxXAlIaUUpRoFUsyaBZHQLpJQmMwUQF1fZQoaAZoCWgPQwhqwvaTMY4QwJSGlFKUaBVLMmgWR0C6SkjBZZB+dX2UKGgGaAloD0MILA/SU+TwE8CUhpRSlGgVSzJoFkdAukopEE1VHXV9lChoBmgJaA9DCLa+SGjLCRPAlIaUUpRoFUsyaBZHQLpKBbItDlZ1fZQoaAZoCWgPQwi3mnXG94UewJSGlFKUaBVLMmgWR0C6SapwKjSHdX2UKGgGaAloD0MIUdmwprJIIMCUhpRSlGgVSzJoFkdAukqwypJf6XV9lChoBmgJaA9DCIMUPIVcCQ/AlIaUUpRoFUsyaBZHQLpKkPP9kz51fZQoaAZoCWgPQwjC2hg74bUjwJSGlFKUaBVLMmgWR0C6Sm15v99/dX2UKGgGaAloD0MIluttMxXCD8CUhpRSlGgVSzJoFkdAukoSIdlunHV9lChoBmgJaA9DCEfn/BTHgRDAlIaUUpRoFUsyaBZHQLpLGgfU4Jh1fZQoaAZoCWgPQwiXrmAb8TQXwJSGlFKUaBVLMmgWR0C6Svo8uBczdX2UKGgGaAloD0MIv4HJjSLrDsCUhpRSlGgVSzJoFkdAukrW7TUiIXV9lChoBmgJaA9DCCUgJuFCzhXAlIaUUpRoFUsyaBZHQLpKe5Rjz7N1fZQoaAZoCWgPQwjBcoQM5HktwJSGlFKUaBVLMmgWR0C6S4MMiKR/dX2UKGgGaAloD0MIhjqscMs3FcCUhpRSlGgVSzJoFkdAuktjNjbzsnV9lChoBmgJaA9DCJboLLMIZSHAlIaUUpRoFUsyaBZHQLpLP9C/oJR1fZQoaAZoCWgPQwiInL6er0EnwJSGlFKUaBVLMmgWR0C6SuRzijtYdX2UKGgGaAloD0MILdDukGIQIcCUhpRSlGgVSzJoFkdAukvx4SpR43V9lChoBmgJaA9DCBcuq7AZEBzAlIaUUpRoFUsyaBZHQLpL0fqHGjt1fZQoaAZoCWgPQwi0keumlPcSwJSGlFKUaBVLMmgWR0C6S66hQFcIdX2UKGgGaAloD0MImbhVEANdH8CUhpRSlGgVSzJoFkdAuktTSE12q3V9lChoBmgJaA9DCHl2+daHxR/AlIaUUpRoFUsyaBZHQLpMW371qWV1fZQoaAZoCWgPQwi22y4019EhwJSGlFKUaBVLMmgWR0C6TDueBg/kdX2UKGgGaAloD0MIjPUNTG60GMCUhpRSlGgVSzJoFkdAukwYJPZZjnV9lChoBmgJaA9DCLg81owMEiDAlIaUUpRoFUsyaBZHQLpLvMwlByF1fZQoaAZoCWgPQwgAVHHjFgshwJSGlFKUaBVLMmgWR0C6TMmIO6NEdX2UKGgGaAloD0MIn6wYrg7QKsCUhpRSlGgVSzJoFkdAukypznzQNXV9lChoBmgJaA9DCNpWs874DhTAlIaUUpRoFUsyaBZHQLpMhlLeyiV1fZQoaAZoCWgPQwjex9EcWZEgwJSGlFKUaBVLMmgWR0C6TCrzshPkdX2UKGgGaAloD0MImwEuyJaFF8CUhpRSlGgVSzJoFkdAuk06cI7eVXV9lChoBmgJaA9DCIi4OZUMUCvAlIaUUpRoFUsyaBZHQLpNGomois51fZQoaAZoCWgPQwglBRbAlMEJwJSGlFKUaBVLMmgWR0C6TPcaOxSpdX2UKGgGaAloD0MIPX0E/vCDIMCUhpRSlGgVSzJoFkdAukycBq9GqnV9lChoBmgJaA9DCDyGx34WOxPAlIaUUpRoFUsyaBZHQLpNs371qWV1fZQoaAZoCWgPQwho0NA/wb0jwJSGlFKUaBVLMmgWR0C6TZOn/DLsdX2UKGgGaAloD0MI3xeXqrQlEMCUhpRSlGgVSzJoFkdAuk1wN7SiNHV9lChoBmgJaA9DCLslOWBXwxPAlIaUUpRoFUsyaBZHQLpNFOGTLW91fZQoaAZoCWgPQwiqY5XSM40SwJSGlFKUaBVLMmgWR0C6ThdX1anrdX2UKGgGaAloD0MItmrXhLSWI8CUhpRSlGgVSzJoFkdAuk33eqJdjXV9lChoBmgJaA9DCHEgJAuYoBXAlIaUUpRoFUsyaBZHQLpN1AC4jKR1fZQoaAZoCWgPQwiH+8itSWcWwJSGlFKUaBVLMmgWR0C6TXiiItUXdX2UKGgGaAloD0MIpHGo34XtEMCUhpRSlGgVSzJoFkdAuk6Ag7o0RHV9lChoBmgJaA9DCJ3ZrtAHCxHAlIaUUpRoFUsyaBZHQLpOYKJl8PZ1fZQoaAZoCWgPQwikNQadEIoQwJSGlFKUaBVLMmgWR0C6Tj0pRXOodX2UKGgGaAloD0MIJUG4AgrFFcCUhpRSlGgVSzJoFkdAuk3h0p3HJnV9lChoBmgJaA9DCFCKVu4FDiTAlIaUUpRoFUsyaBZHQLpO6rAgxJx1fZQoaAZoCWgPQwgLDi+ISKUqwJSGlFKUaBVLMmgWR0C6TsrKeTV2dX2UKGgGaAloD0MIhbAaS1hbIMCUhpRSlGgVSzJoFkdAuk6nWlMyrXV9lChoBmgJaA9DCBAGnnsPlyTAlIaUUpRoFUsyaBZHQLpOTAd4mkZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.10 #1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}