File size: 14,295 Bytes
169364d
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2185899560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f21858995f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2185899680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2185899710>", "_build": "<function ActorCriticPolicy._build at 0x7f21858997a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f2185899830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f21858998c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2185899950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f21858999e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2185899a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2185899b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21858e87b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658943417.257757, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBVGT7c2Gk9U5VZvjrzlL46/nw8ysaovQAAAAAAAAAAgE65PXVDlD9tL7o+tkMHv5HwoT2YEVc+AAAAAAAAAAAAFc09FzWDPsgWOz5feLa+JnSKPo3N3b0AAAAAAAAAAIChrj3zFJ4/KDJ6PnFo6r6JLAY+k7rOPQAAAAAAAAAAMyO4uuHEm7o2efCz79AArzRqJzqJ/JUzAACAPwAAgD/afrO9hSITP25vgz423qu+X+3cPfYxj7sAAAAAAAAAAAAJpD5VpLw+U+xEvrTW176ROq8+vvZBvgAAAAAAAAAAjY6APfYkZroD5NA6lTp2NWW8I7qALPW5AAAAAAAAAAAN5DC+HFaVPxoLEL+dR8K+Dv1pvtVQob4AAAAAAAAAAKb2Gj50sXE/rtzHPYET6b4va2k+ZQFTPQAAAAAAAAAA4BVJPvr7ej8LOmw+cXgBv4FEoD6B6Cs9AAAAAAAAAAAaThW94fyBuv3647NQWjmtRIldObIinzMAAIA/AACAP6ZIgD1oz6s/SMoTP+822b4NMjk8+x1cPgAAAAAAAAAAWukFvodcJj9LS2w+pL3AvkSd+jw51RA9AAAAAAAAAAAzE6I9KZRtuibN+r0XbTi+Kk+nPR0AdT4AAAAAAAAAAKYkkb2E5OE+/nd5PvUgqb4sALA9zPmMPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILscrEL3Ab0CUhpRSlIwBbJRL+owBdJRHQKTnpLOiWVx1fZQoaAZoCWgPQwgQWaSJd49yQJSGlFKUaBVNBgFoFkdApOfJN/OMVHV9lChoBmgJaA9DCKslHeWg63BAlIaUUpRoFU0EAWgWR0Ck5+XhwVCYdX2UKGgGaAloD0MI26Z4XBRpcUCUhpRSlGgVTQsBaBZHQKToDbsWweN1fZQoaAZoCWgPQwhYqDXNOwNUQJSGlFKUaBVLsWgWR0Ck6E9T5wfhdX2UKGgGaAloD0MIat0Gtd8QcECUhpRSlGgVS/9oFkdApOjMVYZEUnV9lChoBmgJaA9DCBY0LbFyCHJAlIaUUpRoFUvnaBZHQKToz/m1YyR1fZQoaAZoCWgPQwg2WDhJ859SQJSGlFKUaBVLtmgWR0Ck6RPK2a2GdX2UKGgGaAloD0MI4rA08GOAckCUhpRSlGgVS+toFkdApOlL4cm0FHV9lChoBmgJaA9DCFn5ZTAG6HJAlIaUUpRoFUvmaBZHQKTpiGHpKSR1fZQoaAZoCWgPQwhR9pZy/lpxQJSGlFKUaBVNEgFoFkdApOm1Gb1AaHV9lChoBmgJaA9DCDfdskP8AW1AlIaUUpRoFUvzaBZHQKTpySkCV8l1fZQoaAZoCWgPQwjKMy+HXfhyQJSGlFKUaBVL82gWR0Ck6kS/j81odX2UKGgGaAloD0MIu31Wmel7cUCUhpRSlGgVTREBaBZHQKTqbeFcpsp1fZQoaAZoCWgPQwiuDoC4K59xQJSGlFKUaBVL7WgWR0Ck6oWt2cJ/dX2UKGgGaAloD0MIAIv8+qGmcECUhpRSlGgVS+poFkdApOrGNaQmu3V9lChoBmgJaA9DCGVQbXAivHFAlIaUUpRoFUv/aBZHQKTq6Eg4ffZ1fZQoaAZoCWgPQwiNf59xIcZyQJSGlFKUaBVL+mgWR0Ck6yLAP/aQdX2UKGgGaAloD0MIl4xjJHuvcECUhpRSlGgVTQgBaBZHQKTrmGB4D9x1fZQoaAZoCWgPQwhUkJ+NXApzQJSGlFKUaBVNrQFoFkdApOuimbb1y3V9lChoBmgJaA9DCGmKAKe33XFAlIaUUpRoFUv2aBZHQKTr3v73wkR1fZQoaAZoCWgPQwhGtvP9FGVyQJSGlFKUaBVNAQFoFkdApOv/bblA/3V9lChoBmgJaA9DCG+3JAds9nJAlIaUUpRoFUv8aBZHQKTsQPikwex1fZQoaAZoCWgPQwjCMcueBKZuQJSGlFKUaBVL2GgWR0Ck7G+7Dl5odX2UKGgGaAloD0MIjpHsEar/cECUhpRSlGgVS/toFkdApOx54KQaJnV9lChoBmgJaA9DCJEsYAI3enBAlIaUUpRoFUvvaBZHQKTsjyiEg4h1fZQoaAZoCWgPQwgDB7R0RTNxQJSGlFKUaBVNAAFoFkdApO0DBbfP5nV9lChoBmgJaA9DCDpAMEcPO3NAlIaUUpRoFUvgaBZHQKTtWgQpWmx1fZQoaAZoCWgPQwh5ILJI0x1yQJSGlFKUaBVNBgFoFkdApO2SKUFB6nV9lChoBmgJaA9DCKQZi6azAG5AlIaUUpRoFUvmaBZHQKTtrNrTH811fZQoaAZoCWgPQwgGvqJb7/RwQJSGlFKUaBVNAwFoFkdApO2z1PFefXV9lChoBmgJaA9DCHA+daxSKm5AlIaUUpRoFUvoaBZHQKTt1DeCTU11fZQoaAZoCWgPQwiHpYEf1cpPQJSGlFKUaBVLwGgWR0Ck7kqdhAnldX2UKGgGaAloD0MIQYLix5h3bUCUhpRSlGgVTQEBaBZHQKT3uP7vXsh1fZQoaAZoCWgPQwjrq6sC9X1xQJSGlFKUaBVL6GgWR0Ck994287IUdX2UKGgGaAloD0MI8bc9QWKFb0CUhpRSlGgVS+poFkdApPftzr/sFHV9lChoBmgJaA9DCEWBPpFnQnBAlIaUUpRoFUvZaBZHQKT4eff4yoJ1fZQoaAZoCWgPQwhzLsVV5UpyQJSGlFKUaBVL72gWR0Ck+JPAwfyPdX2UKGgGaAloD0MIZTcz+tFFb0CUhpRSlGgVTQkBaBZHQKT4rHskY411fZQoaAZoCWgPQwiynlp9dYZxQJSGlFKUaBVL7mgWR0Ck+N9US7GvdX2UKGgGaAloD0MIDmjpCnYPc0CUhpRSlGgVTREBaBZHQKT5PSkTHsF1fZQoaAZoCWgPQwgh6GhVS7FvQJSGlFKUaBVL7GgWR0Ck+axoRIz4dX2UKGgGaAloD0MI6kFBKdodcUCUhpRSlGgVS91oFkdApPnQI8hcJXV9lChoBmgJaA9DCPA0mfG2QXFAlIaUUpRoFU0aAWgWR0Ck+fAB1cMWdX2UKGgGaAloD0MIBKxVu2YscUCUhpRSlGgVS91oFkdApPn9hZyMk3V9lChoBmgJaA9DCNArnnpkgnFAlIaUUpRoFUv6aBZHQKT6Gcn3L3d1fZQoaAZoCWgPQwiU9gZfGMFuQJSGlFKUaBVL+WgWR0Ck+jbDl5nldX2UKGgGaAloD0MIpg2HpYFYYECUhpRSlGgVTegDaBZHQKT6SIEbHZN1fZQoaAZoCWgPQwhVa2EWGh5xQJSGlFKUaBVL1mgWR0Ck+p4//vORdX2UKGgGaAloD0MIFTqvsUtEcECUhpRSlGgVS+9oFkdApPq3G8274HV9lChoBmgJaA9DCGOARBNoT3FAlIaUUpRoFUv3aBZHQKT6vk3CKrJ1fZQoaAZoCWgPQwi/9PbnYmZwQJSGlFKUaBVL/WgWR0Ck+v6Xa8HwdX2UKGgGaAloD0MIaF4Ou+/AckCUhpRSlGgVS9ZoFkdApPs0OLBKtnV9lChoBmgJaA9DCG02VmIe4HBAlIaUUpRoFUvmaBZHQKT7S4vvjOt1fZQoaAZoCWgPQwjrqdVX14pyQJSGlFKUaBVL2WgWR0Ck+3pAD7qIdX2UKGgGaAloD0MISIjyBS3rcECUhpRSlGgVTSQBaBZHQKT8MLsrupl1fZQoaAZoCWgPQwibN04K851xQJSGlFKUaBVL0WgWR0Ck/D3jU/fPdX2UKGgGaAloD0MICyb+KKoKc0CUhpRSlGgVTQsBaBZHQKT8bZrYXft1fZQoaAZoCWgPQwj6JeKtM49yQJSGlFKUaBVNBgFoFkdApPzHXyy2QXV9lChoBmgJaA9DCHeHFANkh3NAlIaUUpRoFUv3aBZHQKT84dOIqLF1fZQoaAZoCWgPQwhQOSaLO5FyQJSGlFKUaBVL8mgWR0Ck/OwxesxPdX2UKGgGaAloD0MITyMtlfeTcECUhpRSlGgVTQcBaBZHQKT9CYaYNRZ1fZQoaAZoCWgPQwjChTyCGwpyQJSGlFKUaBVL9GgWR0Ck/SGYBvJjdX2UKGgGaAloD0MIXvI/+Tskc0CUhpRSlGgVS9hoFkdApP0/+jua4XV9lChoBmgJaA9DCClauRcY1HBAlIaUUpRoFUvyaBZHQKT9dEXLvCx1fZQoaAZoCWgPQwgbf6KyYUpyQJSGlFKUaBVNFwFoFkdApP10g0TDfnV9lChoBmgJaA9DCAcHexMDfXFAlIaUUpRoFUvVaBZHQKT9geGwiaB1fZQoaAZoCWgPQwgH0sWmVRRxQJSGlFKUaBVNDAFoFkdApP3UB0ZFX3V9lChoBmgJaA9DCN2zrtGyFXBAlIaUUpRoFUvhaBZHQKT+GN70Fr51fZQoaAZoCWgPQwgDC2DKQB5vQJSGlFKUaBVL/GgWR0Ck/jP114gSdX2UKGgGaAloD0MIVpxqLYxZckCUhpRSlGgVTRUBaBZHQKT+YNy5qdp1fZQoaAZoCWgPQwhrSrIOR+9xQJSGlFKUaBVL8WgWR0Ck/wQN9YwJdX2UKGgGaAloD0MI56p5jsjUcUCUhpRSlGgVS/hoFkdApP8RVGTcI3V9lChoBmgJaA9DCMmtSbfl1nBAlIaUUpRoFUvuaBZHQKT/LR3NcGF1fZQoaAZoCWgPQwhdixagrRpyQJSGlFKUaBVL4GgWR0Ck/1YQ8OkMdX2UKGgGaAloD0MISfJc34cYcUCUhpRSlGgVS91oFkdApP+KC+UQkHV9lChoBmgJaA9DCKCH2jaM6m9AlIaUUpRoFUvqaBZHQKT/lq0tyxR1fZQoaAZoCWgPQwgx68VQTtlwQJSGlFKUaBVL7GgWR0Ck/82Nm16WdX2UKGgGaAloD0MIsHCS5k90cECUhpRSlGgVTQoBaBZHQKT/6oUBXCF1fZQoaAZoCWgPQwh1WrdBLVRwQJSGlFKUaBVL92gWR0ClAELfcer/dX2UKGgGaAloD0MIYobGEwH+ckCUhpRSlGgVS/poFkdApQBMcfeUIXV9lChoBmgJaA9DCPENhc8Ww3JAlIaUUpRoFUveaBZHQKUAZEbYK6Z1fZQoaAZoCWgPQwiZLVkV4RdzQJSGlFKUaBVNHgFoFkdApQB/4O+ZgHV9lChoBmgJaA9DCKpjldLzhHFAlIaUUpRoFU0eAWgWR0ClAMCKziS8dX2UKGgGaAloD0MIfZI7bOJIcUCUhpRSlGgVS9doFkdApQDi8L8aXXV9lChoBmgJaA9DCIE//Px3XG9AlIaUUpRoFUvvaBZHQKUA99bX6Ip1fZQoaAZoCWgPQwhIqBlSBS9wQJSGlFKUaBVL/WgWR0ClAQTqSowVdX2UKGgGaAloD0MIHa9A9OR/cECUhpRSlGgVTQYBaBZHQKUCF1JUYKp1fZQoaAZoCWgPQwjbozfcx4RvQJSGlFKUaBVL/2gWR0ClAim4I8hcdX2UKGgGaAloD0MIFR3J5b9YcUCUhpRSlGgVS99oFkdApQIz0UXYUXV9lChoBmgJaA9DCC3saYe/2XFAlIaUUpRoFUvyaBZHQKUCZMxoIv91fZQoaAZoCWgPQwh7a2CrBCttQJSGlFKUaBVNDAFoFkdApQKDErGzbHV9lChoBmgJaA9DCMK/CBqzWW9AlIaUUpRoFUvsaBZHQKUCnN34bjt1fZQoaAZoCWgPQwhuwygInndwQJSGlFKUaBVL82gWR0ClAtJV81GcdX2UKGgGaAloD0MIPZzAdBqTcECUhpRSlGgVS/NoFkdApQM3Pomoi3V9lChoBmgJaA9DCPjGEAAcG3FAlIaUUpRoFUv9aBZHQKUDZGhmGud1fZQoaAZoCWgPQwjObcK9coFyQJSGlFKUaBVNAwFoFkdApQOTRYzSC3V9lChoBmgJaA9DCJepSfDG2HJAlIaUUpRoFUvoaBZHQKUDpq4YrJ91fZQoaAZoCWgPQwh1AwXeiQJxQJSGlFKUaBVL2mgWR0ClA7c/D+BIdX2UKGgGaAloD0MIGVQbnIj6ckCUhpRSlGgVTQ4BaBZHQKUD1diUgSx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}