{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b821f918c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689879938229134892, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZZxT6r8z0/vkkbPRPDqb6bplM+Htm4vAAAAAAAAAAAWm6fvbDGAD9aydw9I3Ozvkb7qLwWUyg9AAAAAAAAAABzo789rk2funKx3brhewO2gKi0utqC/zkAAIA/AACAPxruiT0UVJi6QFqCNYlwzy1n6bK6X9+5tAAAgD8AAIA/QAzPPUilkLpQEZc7cK5BOFlt6jr+EpO3AACAPwAAgD9AZ8g95LrJPlGEC70kv7y+FNCqPcAlNL0AAAAAAAAAAADs5TxIW6e6X2erttyyyLGA94A6XTLGNQAAgD8AAIA/DWeGPXFNEbkTTW86aseCNfQMgDiiD425AACAPwAAgD9z8RA+0n6Eu7WEG7nZ3k42pHC/vMBuOTgAAIA/AACAPwCNxrzD0Ta696wfsxNEXKutItg5kbPBMwAAgD8AAIA/zX/MPCmYD7rao025t8g3tMgRUDrd1HU4AACAPwAAgD8ANAi+bPyXuw1PCr0EKVG7ym33PJKuMjwAAIA/AACAP/NtSb5OVNS8S2KuvVc8RrwdZj0+zugYPQAAgD8AAIA/ZitrPeyp0LmeoxS7SW72NV4wijoWyGK1AACAPwAAgD8ae6I9A2dhvBP8yL3E0Z+9UmqhPZ5h3D4AAIA/AACAP6ZP/j2O7rI9S91lvVJuS76BaSo70OfevQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSdNHYpUgmMAWyUTegDjAF0lEdAlyTBJNCZ4XV9lChoBkdAcGtL/S6UaGgHTXkDaAhHQJcnTj2i+L51fZQoaAZHQEtubDuSfUZoB0vZaAhHQJcqP/1g6U91fZQoaAZHQGVjtBOYYzloB03oA2gIR0CXKynQpnYhdX2UKGgGR0Bs6BVGTcIraAdNbQFoCEdAlyuJ/gBLf3V9lChoBkdAcSNCJXQtz2gHTZQBaAhHQJcsC8UVSGd1fZQoaAZHQDBiKvV3EAJoB0vGaAhHQJctyAQQL/l1fZQoaAZHQGBqs67ulXRoB03oA2gIR0CXMZ5LAYYSdX2UKGgGR0BwOWJm/WUbaAdNQwFoCEdAlzcWtITXa3V9lChoBkdAUXuPtD2JzmgHS7doCEdAlzh9kOI683V9lChoBkdAYkGFGoaUA2gHTegDaAhHQJc9mWdEsrd1fZQoaAZHQHFC7R4QjD9oB01FAWgIR0CXP8VrhzeXdX2UKGgGR0BwqhZaFEiMaAdNlAJoCEdAl0ND5j6N2nV9lChoBkdAMwzUAksz22gHS7doCEdAl0QovBacJHV9lChoBkdAYUeYeDFqBWgHTegDaAhHQJdJAfs/pt91fZQoaAZHQGJSwsf7rLRoB03oA2gIR0CXTq/GlyimdX2UKGgGR0BfnKKgqVhTaAdN6ANoCEdAl1Prf+CK8HV9lChoBkdAY3e7zTWoWGgHTegDaAhHQJdcSQtBfKJ1fZQoaAZHQGW0eDFqBVdoB03oA2gIR0CXY56nivPkdX2UKGgGR0Bm7Hcxj8UFaAdN6ANoCEdAl2W7tJFspHV9lChoBkdAcqRtfG+9J2gHTR4CaAhHQJdovdrO7g91fZQoaAZHQG09rHEMspZoB02SA2gIR0CXa6V1wHZ9dX2UKGgGR0Bwi11loUSJaAdNhANoCEdAl2w+40/GEXV9lChoBkdAcQyLL6k692gHTWwBaAhHQJdtkOCoS+R1fZQoaAZHQGIn3Z5AyEdoB03oA2gIR0CXbfXPZ7HAdX2UKGgGR0Bw8Bof0VafaAdNBAJoCEdAl29J+hGpdnV9lChoBkdAcXR7mdRR/GgHTV0CaAhHQJdxj3qRlpZ1fZQoaAZHQGAHBfBvaURoB03oA2gIR0CXccPRRdhRdX2UKGgGR0AcyngpBomHaAdLx2gIR0CXd6VYISlFdX2UKGgGR0BhhI1xbSqmaAdN6ANoCEdAl3h01dgOSXV9lChoBkdATnBcLSeAeGgHS6doCEdAl3jRj8UEgXV9lChoBkdAcJxdt2s7uGgHTdYBaAhHQJd6ebrkbP11fZQoaAZHQGfZL0rbxmVoB03oA2gIR0CXf8tL+PzWdX2UKGgGR0BwF54TsY2saAdNiQNoCEdAl4SQXhwVCXV9lChoBkdAbpU5n13+uWgHTdsBaAhHQJeE0vzvqkd1fZQoaAZHQDBdAyEcsDpoB0uwaAhHQJeFNRJmNBF1fZQoaAZHQHDzQVKwpvxoB00xAWgIR0CXhcNyo4uLdX2UKGgGR0BlRcZFXq7iaAdN6ANoCEdAl4hyuyNXHXV9lChoBkdAbvRWy1NQCWgHTUMBaAhHQJeN6yhSLqF1fZQoaAZHQHI6eqaPS2JoB01NAmgIR0CXjsGcWj46dX2UKGgGR0BNIcbJfYz0aAdL1GgIR0CXkbbrC3w1dX2UKGgGR0Blm/jCHh0haAdN6ANoCEdAl5HlktmL+HV9lChoBkdAcJWEhJRO12gHTY8BaAhHQJff4hW5pal1fZQoaAZHQHD8Wlhw2l5oB02KAmgIR0CX4RX18LKFdX2UKGgGR0BwnVjOLR8daAdL4mgIR0CX4WBj4HopdX2UKGgGR0BvdGRkmQbNaAdN3gJoCEdAl+G+TA31jHV9lChoBkdAVFj/Nqxkd2gHS9poCEdAl+TI+B6KL3V9lChoBkdAYW7BdD6WPmgHTegDaAhHQJfpwPGyX2N1fZQoaAZHQG/ZUONHYpVoB00wAWgIR0CX60zS1E3LdX2UKGgGR0BT+/ACW/rTaAdLtWgIR0CX6+NKyv9tdX2UKGgGR0AwoPwNLDhtaAdL1WgIR0CX78edTYNBdX2UKGgGR0BybxJ8OTaCaAdN8wJoCEdAl/Ctr0rbxnV9lChoBkdAcWKmFJxvN2gHTd4CaAhHQJfxSSPluFZ1fZQoaAZHQGHicYQ8OkNoB03oA2gIR0CX8haNMoMKdX2UKGgGR0BciCkO7QLNaAdN6ANoCEdAl/QN0/4ZdnV9lChoBkdAbRsEOiFj/mgHTbICaAhHQJf4tnrY5DJ1fZQoaAZHQDNvT1CgK4RoB0vJaAhHQJf7wHTqjah1fZQoaAZHQHGsKzE74i5oB00hA2gIR0CX+9T238XOdX2UKGgGR0BytodXDFZQaAdNdQFoCEdAl/+1JL/S6XV9lChoBkdAcJy63RXwLGgHS/loCEdAmAEp8BuGbnV9lChoBkdAcP57+T/yXmgHTZABaAhHQJgCy0fHPu51fZQoaAZHQGT5NHhCMP1oB03oA2gIR0CYB3C5mRNidX2UKGgGR0BkWYYFaB7NaAdN6ANoCEdAmAfm2oegc3V9lChoBkdAcVVZDRc/uGgHTcoBaAhHQJgJOBSUC7t1fZQoaAZHQHFGycCo0hxoB03NAWgIR0CYCfJjUd7wdX2UKGgGR0BwMA6IWP92aAdNxgFoCEdAmAqK6J66a3V9lChoBkdAchf/J/5Ly2gHTbYCaAhHQJgKniNsFdN1fZQoaAZHQHMgGq1gH/toB03KAmgIR0CYCv876pHadX2UKGgGR0ByOFpTMqz7aAdNWwJoCEdAmAzoGdI5HXV9lChoBkdAYxZiSaEzwmgHTegDaAhHQJgOlIH1OCZ1fZQoaAZHQHHhf7vXsgNoB01zAWgIR0CYD1OcDr7gdX2UKGgGR0ByZ9bkfcN6aAdNQwFoCEdAmBA21twaSHV9lChoBkdAGZrfcer+52gHS85oCEdAmBSP9pAUtnV9lChoBkdAcZa+jua4MGgHTXQDaAhHQJgWO2phnap1fZQoaAZHQHNzTMNc4YJoB01IAWgIR0CYGYobXHzZdX2UKGgGR0BxU4zxgAp8aAdNawFoCEdAmBnGlhw2l3V9lChoBkdAcNAp48lolGgHTagCaAhHQJgd0lByCFt1fZQoaAZHQHCpVEqlP8BoB00OAWgIR0CYIR1KoQ4CdX2UKGgGR0BxKXwd8zAOaAdNaAJoCEdAmCVeXeFcp3V9lChoBkdAb5zUaya/h2gHTcABaAhHQJglyuJUHY91fZQoaAZHQHDLLm6oVEdoB008AWgIR0CYMGmCAc1gdX2UKGgGR0BxpIZ2pyZKaAdNFQFoCEdAmDGPU4JeFHV9lChoBkdAR2AagmJFb2gHS8ZoCEdAmDJpgPVd5nV9lChoBkdAcKK8UEgW8GgHTRYDaAhHQJgyhJg9eQd1fZQoaAZHQHE4ewgTyrhoB02lAmgIR0CYM1bbUPQOdX2UKGgGR0BhMnEETxoaaAdN6ANoCEdAmDdKL0jC53V9lChoBkdAcPdv+OwPiGgHTecCaAhHQJg3svPC2tx1fZQoaAZHQHCIK7yxzJZoB03TAmgIR0CYOYSfUWl/dX2UKGgGR0Bw5T0Gu9vkaAdNTgJoCEdAmDzEv0yxiXV9lChoBkdAcgFiuuA7P2gHTQsDaAhHQJg+qHi3ocJ1fZQoaAZHQHFObCJoCdVoB00OA2gIR0CYP8yPMjeLdX2UKGgGR0BxLxzzVc2SaAdN+wFoCEdAmECuLNwBHXV9lChoBkdAZ43ojfNzKmgHTegDaAhHQJhDKLn9vTB1fZQoaAZHQG29UTtb9qFoB02nAmgIR0CYRSm8M/hVdX2UKGgGR0BwJcglnh86aAdNDQNoCEdAmEYNXgccVHV9lChoBkdANvBcAzYVZmgHS7loCEdAmErovi97GHV9lChoBkdAcDc/keZG8WgHS/1oCEdAmEvdKZlWfnV9lChoBkdAbtCjTKDCg2gHTaYBaAhHQJhQ6YE4ecR1fZQoaAZHQHGpt+ocaOxoB02yAWgIR0CYUVV2icoZdX2UKGgGR0BxJfWAf+0gaAdNMAFoCEdAmFG6mO2iL3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}