File size: 13,757 Bytes
45416de
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d075b6da4d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d075b6da560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d075b6da5f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d075b6da680>", "_build": "<function ActorCriticPolicy._build at 0x7d075b6da710>", "forward": "<function ActorCriticPolicy.forward at 0x7d075b6da7a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d075b6da830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d075b6da8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d075b6da950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d075b6da9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d075b6daa70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d075b6dab00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d075b6d5500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713176330409635728, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZChj4prQo//vGnvgr1sb4QRis+foubvgAAAAAAAAAA2slTPitNhj9e8uo+dbwTv4GLjz5biVE9AAAAAAAAAACaJUg9XKMjujAvNTQBdFYwczCTu6Cbn7MAAIA/AACAP+aeU71XPro/dBoev96QHD5FT1M73X7bvQAAAAAAAAAAxmYmvhvD0T0q+cE9f+1Tvl/BNry2ujy9AAAAAAAAAABmEnC9J1dDPwjg1z1me6++j/9+vH7HyDwAAAAAAAAAAIAZBr2u9au6TTACNLM1ki4fNzi4xECkswAAgD8AAIA/Td2PvUjNj7oGwBs4hAg+MybrGjsS5jO3AACAPwAAgD+anzu8nMewP2NOwL687e++i14IPHbqmzwAAAAAAAAAAIDwQL7jKgo/fj14Pgz00r6te5o8Y7DsPQAAAAAAAAAAWk7IPR8Vvrm/LykzEPYgMF+fBju+M8GzAACAPwAAgD+r/Zq+lUx4P2rn2z1GoeG+OsC6vrbJdz4AAAAAAAAAADNNMryc85U+3ucFPl7xl7503/g9h52pvQAAAAAAAAAAjdutvVwbP7qTuYq5QD8UtVkOt7sGlqA4AAAAAAAAgD9mJhQ6qTVnvOzBtLwkwom94C/UvUudYL4AAIA/AACAPwDvNb6yZIE/vf/yPV67zb49PbO9SjIkPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzhnH3lCC2MAWyUTSgBjAF0lEdAktGPN3W4E3V9lChoBkdAbsE+MZP2wmgHS/5oCEdAktHANXo1UHV9lChoBkdAbzQxHoX9BWgHTR8BaAhHQJLRx5nlGPR1fZQoaAZHQG9S2Yv38GdoB00TAWgIR0CS0dGnGbTddX2UKGgGR0BxnmsA/9pAaAdNLAFoCEdAktJBX0XgtXV9lChoBkdAb/BnIQvpQmgHTQsBaAhHQJLSb9ehPCV1fZQoaAZHQHDZnl0YCQtoB00mAWgIR0CS0wSG8EmqdX2UKGgGR0BFivbGm1pkaAdLjGgIR0CS04q6e5FxdX2UKGgGR0BvvCIvalDXaAdNXgFoCEdAktQPNzKcNHV9lChoBkdAcVXfsu3+dmgHTRgBaAhHQJLUcP4EfT11fZQoaAZHQHM48/6frbBoB00IAWgIR0CS1Rf6XSjQdX2UKGgGR0BwKQtdzGPxaAdNUQFoCEdAktUc3IdU83V9lChoBkdAb/rR2r4nGGgHTQcBaAhHQJLViG21D0F1fZQoaAZHQHKHBpQDV6NoB00uAWgIR0CS1drfcer/dX2UKGgGR0BC2RXOnl4kaAdLzmgIR0CS1d/jKgZkdX2UKGgGR0BwSMIHC4z8aAdNXwFoCEdAktZZaaCtinV9lChoBkdAQFde+mFajmgHS8JoCEdAktiCIDYAbXV9lChoBkdAcWfWFvhqCmgHTQsBaAhHQJLY5nscABF1fZQoaAZHQHJAtV7x/d9oB0v7aAhHQJLZD5VOsT51fZQoaAZHQEXdWRRuTA5oB0u6aAhHQJLZz8dgfEJ1fZQoaAZHQHAwC9IwudxoB00hAWgIR0CS2f5dnkDIdX2UKGgGR0BwRVV3ljmTaAdNNwFoCEdAktoFLWZqmHV9lChoBkdAbhu+tbLU1GgHTTsBaAhHQJLaSWldkax1fZQoaAZHQHFPrEgntv5oB0voaAhHQJLabqcEvCd1fZQoaAZHQHKxNLQHAypoB01iAWgIR0CS20crAgxKdX2UKGgGR0BPGbZWaMJhaAdLv2gIR0CS21gQYk3TdX2UKGgGR0Bxuy7GvOhTaAdNOAFoCEdAktwtLxqfvnV9lChoBkdAcHUUn5SFXmgHTSwBaAhHQJLc24NI9Tx1fZQoaAZHQHGjmuHN5dJoB00/AWgIR0CS3feLNwBHdX2UKGgGR0BwcJt4zJp4aAdNPAFoCEdAkt5R91EE1XV9lChoBkdAcbXuDBdld2gHTUsBaAhHQJLevM3ZPEd1fZQoaAZHQEvlewcHWz5oB0vPaAhHQJLfrE/B3zN1fZQoaAZHQB0w3Lmp2lloB0vHaAhHQJLf9e9i+cp1fZQoaAZHQHFFQFcIJJJoB0v4aAhHQJLgJhvze411fZQoaAZHQG/0cMEzO5doB00jAWgIR0CS4OZFXq7idX2UKGgGR0BtN2r2g398aAdL+2gIR0CS4UbHp8nedX2UKGgGR0BKiHt4RmK7aAdLyWgIR0CS4VYPGyX2dX2UKGgGR0BvaMiY9gWraAdNAAFoCEdAkuL6m0mdAnV9lChoBkdAcs87r9l2/2gHTTkBaAhHQJLjLBhx5s11fZQoaAZHQHD/P2bobGZoB00xAWgIR0CS424BFNL2dX2UKGgGR0Bx+CMVDa4+aAdNcgFoCEdAkuO+3x4IKXV9lChoBkdAc3IuRLbpNmgHTSUBaAhHQJLk6lLvkR11fZQoaAZHQHCla7Ackt5oB00UAWgIR0CS5RYgJTl1dX2UKGgGR0BygCm0mdAgaAdL/mgIR0CS5cjHGS6ldX2UKGgGR0BSlYDs+mm+aAdLwWgIR0CS5nP1L8JldX2UKGgGR0Bx1D9fkWAPaAdNOgFoCEdAkvoYo3JgcHV9lChoBkdAcXZgOjIq9WgHTUQBaAhHQJL7McrAgxJ1fZQoaAZHQHEEueSSvDBoB00IAWgIR0CS++mAskIHdX2UKGgGR0BU50DZDiOvaAdL2WgIR0CS/CsU7CBPdX2UKGgGR0BxKgvqTr3TaAdNOgFoCEdAkvxpAD7qIXV9lChoBkdAbxG2pAD7qWgHTVcBaAhHQJL82gUUO/d1fZQoaAZHQHLzhUvPC2toB00VAWgIR0CS/ug2606YdX2UKGgGR0Bw++7+T/yYaAdNLAFoCEdAkv8IQOFxn3V9lChoBkdAbW+HCXQdCGgHS/doCEdAkv+Td+G47XV9lChoBkdAcjVOCGvfTGgHTagBaAhHQJL/sfgaWHF1fZQoaAZHQHALDINmUW5oB018AWgIR0CS/7BikO7QdX2UKGgGR0Bw0JdyDIzWaAdNQgFoCEdAkv/1+iJwbXV9lChoBkdAccM7CiyprGgHTRwBaAhHQJMBX6vaDf51fZQoaAZHQHIHumelKsdoB00PAWgIR0CTAn5mh/RWdX2UKGgGR0Beunvx6OYIaAdN6ANoCEdAkwK8b70nPXV9lChoBkdAcBUHGS6lL2gHTQUBaAhHQJMDN8UmD151fZQoaAZHQFTdjvNNahZoB0vpaAhHQJMDdMvh60J1fZQoaAZHQHDSCxzJZGNoB0v+aAhHQJMEeFdszl91fZQoaAZHQHIF/GyX2M9oB015AWgIR0CTBNkE9t/GdX2UKGgGR0Bydq07bL2YaAdNJAFoCEdAkwUI6jnFHnV9lChoBkdAcPKk4FRpDmgHTTIBaAhHQJMFNX5nDix1fZQoaAZHQHJRWDL8rI5oB00TAWgIR0CTBwguRLbpdX2UKGgGR0BvkxsuWa+faAdNIwFoCEdAkwew7PppvnV9lChoBkdAbnUYbbUPQWgHTQQBaAhHQJMHsRnOB191fZQoaAZHQG7cRDTjNpxoB00iAmgIR0CTCEQFLWZrdX2UKGgGR0Bx4RQXQ+lkaAdNKwFoCEdAkwiVymygPHV9lChoBkdAcOhcgyM1j2gHTSwBaAhHQJMIoUFjd591fZQoaAZHQHCOFHFxXGRoB00MAWgIR0CTCVbyH2ytdX2UKGgGR0BLGhEa2nbZaAdLsGgIR0CTCfnQID5kdX2UKGgGR0BvPFxZMcp9aAdNEwFoCEdAkwp6asp5NXV9lChoBkdAcrFreqJdjWgHTREBaAhHQJMKotvn8sN1fZQoaAZHQHK6yFbmlqJoB00WAWgIR0CTCzFhoduHdX2UKGgGR0BygWzWwu/UaAdNAgFoCEdAkwxJfMOf/XV9lChoBkdAcyVWjoIOY2gHTUEBaAhHQJMMk5wOvuB1fZQoaAZHQHMPQ97ngYRoB009AWgIR0CTDX1pj+aSdX2UKGgGR0BUngr6LwWnaAdLvWgIR0CTDpFocrAhdX2UKGgGR0BzbsidJ8OTaAdNUwFoCEdAkw7pSm65G3V9lChoBkdAcSlBH09QoGgHTQ4BaAhHQJMPUvpQk5Z1fZQoaAZHQFNW48U21lZoB0umaAhHQJMPZhqj8DV1fZQoaAZHQG99rwe/5+JoB00sAWgIR0CTD6Il+mWMdX2UKGgGR0Bw7Vu89Oh1aAdNBQFoCEdAkw+gsGxD9nV9lChoBkdAcF8VpKzzE2gHTR4BaAhHQJMPyH446wN1fZQoaAZHQHGIyLdepn9oB00UAWgIR0CTEEpztCzDdX2UKGgGR0Bw+not+TePaAdNIQFoCEdAkxCS+De0onV9lChoBkdAcq0/dIoVmGgHTRUBaAhHQJMRsGbCrLh1fZQoaAZHQHJD6OtGNJhoB02SAmgIR0CTEm0cwQDndX2UKGgGR0Bx2yYIBzV+aAdL/2gIR0CTE5iblRxcdX2UKGgGR0BxiVbcGkeqaAdL+GgIR0CTFKy+Yc//dX2UKGgGR0BwfF0PpY9xaAdNUgFoCEdAkxTyzXz19XV9lChoBkdAcBgNSIgvDmgHTSIBaAhHQJMVD6sQumJ1fZQoaAZHQG/bSvC/Gl1oB015AWgIR0CTFUGY8dPtdX2UKGgGR0Bz3Gjh1klNaAdL6WgIR0CTFY+b3Gn5dX2UKGgGR0BzWKBg/keZaAdL+GgIR0CTFlzMA3kxdX2UKGgGR0BwL2+oLofTaAdNMAFoCEdAkxczXarWAnV9lChoBkdAcF9SPU8V6GgHTR0BaAhHQJMXVaNdZ7p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}