jaytonde05
commited on
Commit
•
61d092a
1
Parent(s):
63cd3e1
Upload train.log with huggingface_hub
Browse files
train.log
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<--Spectrogram-->
|
2 |
+
Type : <class 'dict'>
|
3 |
+
Length : 11138
|
4 |
+
Length : 319287046
|
5 |
+
Shape one element : (752, 400)
|
6 |
+
|
7 |
+
-----------------------------
|
8 |
+
|
9 |
+
<--EEG-->
|
10 |
+
Type : <class 'dict'>
|
11 |
+
Length : 20183
|
12 |
+
Length : 127492639
|
13 |
+
Shape one element : (128, 256, 4)
|
14 |
+
Creadting 5 folds of the training data
|
15 |
+
========== fold: 0 training ==========
|
16 |
+
Epoch 1 - avg_train_loss: 0.4490 avg_val_loss: 0.4243 time: 125s
|
17 |
+
Epoch 1 - Save Best valid loss: 0.4243 Model
|
18 |
+
Epoch 2 - avg_train_loss: 0.3431 avg_val_loss: 0.3847 time: 120s
|
19 |
+
Epoch 2 - Save Best valid loss: 0.3847 Model
|
20 |
+
Epoch 3 - avg_train_loss: 0.3024 avg_val_loss: 0.3708 time: 120s
|
21 |
+
Epoch 3 - Save Best valid loss: 0.3708 Model
|
22 |
+
Epoch 4 - avg_train_loss: 0.2752 avg_val_loss: 0.3599 time: 120s
|
23 |
+
Epoch 4 - Save Best valid loss: 0.3599 Model
|
24 |
+
Epoch 5 - avg_train_loss: 0.2533 avg_val_loss: 0.3708 time: 120s
|
25 |
+
========== fold: 0 result ==========
|
26 |
+
Score with best loss weights stage1: 0.3598788937469328
|
27 |
+
========== fold: 1 training ==========
|
28 |
+
Epoch 1 - avg_train_loss: 0.4582 avg_val_loss: 0.3886 time: 121s
|
29 |
+
Epoch 1 - Save Best valid loss: 0.3886 Model
|
30 |
+
Epoch 2 - avg_train_loss: 0.3445 avg_val_loss: 0.3738 time: 120s
|
31 |
+
Epoch 2 - Save Best valid loss: 0.3738 Model
|
32 |
+
Epoch 3 - avg_train_loss: 0.3068 avg_val_loss: 0.3503 time: 120s
|
33 |
+
Epoch 3 - Save Best valid loss: 0.3503 Model
|
34 |
+
Epoch 4 - avg_train_loss: 0.2764 avg_val_loss: 0.3595 time: 120s
|
35 |
+
Epoch 5 - avg_train_loss: 0.2570 avg_val_loss: 0.3453 time: 120s
|
36 |
+
Epoch 5 - Save Best valid loss: 0.3453 Model
|
37 |
+
========== fold: 1 result ==========
|
38 |
+
Score with best loss weights stage1: 0.3452556534977812
|
39 |
+
========== fold: 2 training ==========
|
40 |
+
Epoch 1 - avg_train_loss: 0.4569 avg_val_loss: 0.3837 time: 121s
|
41 |
+
Epoch 1 - Save Best valid loss: 0.3837 Model
|
42 |
+
Epoch 2 - avg_train_loss: 0.3405 avg_val_loss: 0.3605 time: 120s
|
43 |
+
Epoch 2 - Save Best valid loss: 0.3605 Model
|
44 |
+
Epoch 3 - avg_train_loss: 0.2994 avg_val_loss: 0.3407 time: 121s
|
45 |
+
Epoch 3 - Save Best valid loss: 0.3407 Model
|
46 |
+
Epoch 4 - avg_train_loss: 0.2729 avg_val_loss: 0.3402 time: 120s
|
47 |
+
Epoch 4 - Save Best valid loss: 0.3402 Model
|
48 |
+
Epoch 5 - avg_train_loss: 0.2489 avg_val_loss: 0.3374 time: 121s
|
49 |
+
Epoch 5 - Save Best valid loss: 0.3374 Model
|
50 |
+
========== fold: 2 result ==========
|
51 |
+
Score with best loss weights stage1: 0.3373754414364581
|
52 |
+
========== fold: 3 training ==========
|
53 |
+
Epoch 1 - avg_train_loss: 0.4586 avg_val_loss: 0.3846 time: 121s
|
54 |
+
Epoch 1 - Save Best valid loss: 0.3846 Model
|
55 |
+
Epoch 2 - avg_train_loss: 0.3424 avg_val_loss: 0.3545 time: 120s
|
56 |
+
Epoch 2 - Save Best valid loss: 0.3545 Model
|
57 |
+
Epoch 3 - avg_train_loss: 0.3046 avg_val_loss: 0.3353 time: 120s
|
58 |
+
Epoch 3 - Save Best valid loss: 0.3353 Model
|
59 |
+
Epoch 4 - avg_train_loss: 0.2746 avg_val_loss: 0.3511 time: 120s
|
60 |
+
Epoch 5 - avg_train_loss: 0.2525 avg_val_loss: 0.3423 time: 120s
|
61 |
+
========== fold: 3 result ==========
|
62 |
+
Score with best loss weights stage1: 0.3353293751642418
|
63 |
+
========== fold: 4 training ==========
|
64 |
+
Epoch 1 - avg_train_loss: 0.4668 avg_val_loss: 0.3785 time: 121s
|
65 |
+
Epoch 1 - Save Best valid loss: 0.3785 Model
|
66 |
+
Epoch 2 - avg_train_loss: 0.3545 avg_val_loss: 0.3445 time: 119s
|
67 |
+
Epoch 2 - Save Best valid loss: 0.3445 Model
|
68 |
+
Epoch 3 - avg_train_loss: 0.3113 avg_val_loss: 0.3239 time: 120s
|
69 |
+
Epoch 3 - Save Best valid loss: 0.3239 Model
|
70 |
+
Epoch 4 - avg_train_loss: 0.2863 avg_val_loss: 0.3295 time: 120s
|
71 |
+
Epoch 5 - avg_train_loss: 0.2586 avg_val_loss: 0.3275 time: 120s
|
72 |
+
========== fold: 4 result ==========
|
73 |
+
Score with best loss weights stage1: 0.3239006738005828
|
74 |
+
========== CV ==========
|
75 |
+
Score with best loss weights stage1: 0.34034800752919936
|
76 |
+
========== fold: 0 training ==========
|
77 |
+
Epoch 1 - avg_train_loss: 0.2589 avg_val_loss: 0.4813 time: 48s
|
78 |
+
Epoch 1 - Save Best valid loss: 0.4813 Model
|
79 |
+
Epoch 2 - avg_train_loss: 0.2118 avg_val_loss: 0.5373 time: 48s
|
80 |
+
Epoch 3 - avg_train_loss: 0.1913 avg_val_loss: 0.4766 time: 47s
|
81 |
+
Epoch 3 - Save Best valid loss: 0.4766 Model
|
82 |
+
Epoch 4 - avg_train_loss: 0.1719 avg_val_loss: 0.4972 time: 47s
|
83 |
+
Epoch 5 - avg_train_loss: 0.1586 avg_val_loss: 0.5009 time: 47s
|
84 |
+
========== fold: 0 result ==========
|
85 |
+
Score with best loss weights stage2: 0.47662054733501263
|
86 |
+
========== fold: 1 training ==========
|
87 |
+
Epoch 1 - avg_train_loss: 0.2335 avg_val_loss: 0.4232 time: 50s
|
88 |
+
Epoch 1 - Save Best valid loss: 0.4232 Model
|
89 |
+
Epoch 2 - avg_train_loss: 0.1913 avg_val_loss: 0.4603 time: 48s
|
90 |
+
Epoch 3 - avg_train_loss: 0.1755 avg_val_loss: 0.4866 time: 49s
|
91 |
+
Epoch 4 - avg_train_loss: 0.1574 avg_val_loss: 0.4770 time: 49s
|
92 |
+
Epoch 5 - avg_train_loss: 0.1445 avg_val_loss: 0.4739 time: 48s
|
93 |
+
========== fold: 1 result ==========
|
94 |
+
Score with best loss weights stage2: 0.4232155225685631
|
95 |
+
========== fold: 2 training ==========
|
96 |
+
Epoch 1 - avg_train_loss: 0.2305 avg_val_loss: 0.4416 time: 50s
|
97 |
+
Epoch 1 - Save Best valid loss: 0.4416 Model
|
98 |
+
Epoch 2 - avg_train_loss: 0.1891 avg_val_loss: 0.4643 time: 49s
|
99 |
+
Epoch 3 - avg_train_loss: 0.1665 avg_val_loss: 0.4959 time: 49s
|
100 |
+
Epoch 4 - avg_train_loss: 0.1552 avg_val_loss: 0.4505 time: 49s
|
101 |
+
Epoch 5 - avg_train_loss: 0.1433 avg_val_loss: 0.4583 time: 49s
|
102 |
+
========== fold: 2 result ==========
|
103 |
+
Score with best loss weights stage2: 0.4416244997448457
|
104 |
+
========== fold: 3 training ==========
|
105 |
+
Epoch 1 - avg_train_loss: 0.2756 avg_val_loss: 0.4538 time: 50s
|
106 |
+
Epoch 1 - Save Best valid loss: 0.4538 Model
|
107 |
+
Epoch 2 - avg_train_loss: 0.2203 avg_val_loss: 0.4531 time: 49s
|
108 |
+
Epoch 2 - Save Best valid loss: 0.4531 Model
|
109 |
+
Epoch 3 - avg_train_loss: 0.1964 avg_val_loss: 0.4876 time: 50s
|
110 |
+
Epoch 4 - avg_train_loss: 0.1778 avg_val_loss: 0.4753 time: 49s
|
111 |
+
Epoch 5 - avg_train_loss: 0.1682 avg_val_loss: 0.4917 time: 49s
|
112 |
+
========== fold: 3 result ==========
|
113 |
+
Score with best loss weights stage2: 0.453083156121616
|
114 |
+
========== fold: 4 training ==========
|
115 |
+
Epoch 1 - avg_train_loss: 0.2741 avg_val_loss: 0.4381 time: 50s
|
116 |
+
Epoch 1 - Save Best valid loss: 0.4381 Model
|
117 |
+
Epoch 2 - avg_train_loss: 0.2243 avg_val_loss: 0.4424 time: 49s
|
118 |
+
Epoch 3 - avg_train_loss: 0.2020 avg_val_loss: 0.4471 time: 49s
|
119 |
+
Epoch 4 - avg_train_loss: 0.1878 avg_val_loss: 0.4826 time: 50s
|
120 |
+
Epoch 5 - avg_train_loss: 0.1698 avg_val_loss: 0.4790 time: 49s
|
121 |
+
========== fold: 4 result ==========
|
122 |
+
Score with best loss weights stage2: 0.4381120401343222
|
123 |
+
========== CV ==========
|
124 |
+
Score with best loss weights stage2: 0.44653115318087194
|