jaytonde05 commited on
Commit
61d092a
1 Parent(s): 63cd3e1

Upload train.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. train.log +124 -0
train.log ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <--Spectrogram-->
2
+ Type : <class 'dict'>
3
+ Length : 11138
4
+ Length : 319287046
5
+ Shape one element : (752, 400)
6
+
7
+ -----------------------------
8
+
9
+ <--EEG-->
10
+ Type : <class 'dict'>
11
+ Length : 20183
12
+ Length : 127492639
13
+ Shape one element : (128, 256, 4)
14
+ Creadting 5 folds of the training data
15
+ ========== fold: 0 training ==========
16
+ Epoch 1 - avg_train_loss: 0.4490 avg_val_loss: 0.4243 time: 125s
17
+ Epoch 1 - Save Best valid loss: 0.4243 Model
18
+ Epoch 2 - avg_train_loss: 0.3431 avg_val_loss: 0.3847 time: 120s
19
+ Epoch 2 - Save Best valid loss: 0.3847 Model
20
+ Epoch 3 - avg_train_loss: 0.3024 avg_val_loss: 0.3708 time: 120s
21
+ Epoch 3 - Save Best valid loss: 0.3708 Model
22
+ Epoch 4 - avg_train_loss: 0.2752 avg_val_loss: 0.3599 time: 120s
23
+ Epoch 4 - Save Best valid loss: 0.3599 Model
24
+ Epoch 5 - avg_train_loss: 0.2533 avg_val_loss: 0.3708 time: 120s
25
+ ========== fold: 0 result ==========
26
+ Score with best loss weights stage1: 0.3598788937469328
27
+ ========== fold: 1 training ==========
28
+ Epoch 1 - avg_train_loss: 0.4582 avg_val_loss: 0.3886 time: 121s
29
+ Epoch 1 - Save Best valid loss: 0.3886 Model
30
+ Epoch 2 - avg_train_loss: 0.3445 avg_val_loss: 0.3738 time: 120s
31
+ Epoch 2 - Save Best valid loss: 0.3738 Model
32
+ Epoch 3 - avg_train_loss: 0.3068 avg_val_loss: 0.3503 time: 120s
33
+ Epoch 3 - Save Best valid loss: 0.3503 Model
34
+ Epoch 4 - avg_train_loss: 0.2764 avg_val_loss: 0.3595 time: 120s
35
+ Epoch 5 - avg_train_loss: 0.2570 avg_val_loss: 0.3453 time: 120s
36
+ Epoch 5 - Save Best valid loss: 0.3453 Model
37
+ ========== fold: 1 result ==========
38
+ Score with best loss weights stage1: 0.3452556534977812
39
+ ========== fold: 2 training ==========
40
+ Epoch 1 - avg_train_loss: 0.4569 avg_val_loss: 0.3837 time: 121s
41
+ Epoch 1 - Save Best valid loss: 0.3837 Model
42
+ Epoch 2 - avg_train_loss: 0.3405 avg_val_loss: 0.3605 time: 120s
43
+ Epoch 2 - Save Best valid loss: 0.3605 Model
44
+ Epoch 3 - avg_train_loss: 0.2994 avg_val_loss: 0.3407 time: 121s
45
+ Epoch 3 - Save Best valid loss: 0.3407 Model
46
+ Epoch 4 - avg_train_loss: 0.2729 avg_val_loss: 0.3402 time: 120s
47
+ Epoch 4 - Save Best valid loss: 0.3402 Model
48
+ Epoch 5 - avg_train_loss: 0.2489 avg_val_loss: 0.3374 time: 121s
49
+ Epoch 5 - Save Best valid loss: 0.3374 Model
50
+ ========== fold: 2 result ==========
51
+ Score with best loss weights stage1: 0.3373754414364581
52
+ ========== fold: 3 training ==========
53
+ Epoch 1 - avg_train_loss: 0.4586 avg_val_loss: 0.3846 time: 121s
54
+ Epoch 1 - Save Best valid loss: 0.3846 Model
55
+ Epoch 2 - avg_train_loss: 0.3424 avg_val_loss: 0.3545 time: 120s
56
+ Epoch 2 - Save Best valid loss: 0.3545 Model
57
+ Epoch 3 - avg_train_loss: 0.3046 avg_val_loss: 0.3353 time: 120s
58
+ Epoch 3 - Save Best valid loss: 0.3353 Model
59
+ Epoch 4 - avg_train_loss: 0.2746 avg_val_loss: 0.3511 time: 120s
60
+ Epoch 5 - avg_train_loss: 0.2525 avg_val_loss: 0.3423 time: 120s
61
+ ========== fold: 3 result ==========
62
+ Score with best loss weights stage1: 0.3353293751642418
63
+ ========== fold: 4 training ==========
64
+ Epoch 1 - avg_train_loss: 0.4668 avg_val_loss: 0.3785 time: 121s
65
+ Epoch 1 - Save Best valid loss: 0.3785 Model
66
+ Epoch 2 - avg_train_loss: 0.3545 avg_val_loss: 0.3445 time: 119s
67
+ Epoch 2 - Save Best valid loss: 0.3445 Model
68
+ Epoch 3 - avg_train_loss: 0.3113 avg_val_loss: 0.3239 time: 120s
69
+ Epoch 3 - Save Best valid loss: 0.3239 Model
70
+ Epoch 4 - avg_train_loss: 0.2863 avg_val_loss: 0.3295 time: 120s
71
+ Epoch 5 - avg_train_loss: 0.2586 avg_val_loss: 0.3275 time: 120s
72
+ ========== fold: 4 result ==========
73
+ Score with best loss weights stage1: 0.3239006738005828
74
+ ========== CV ==========
75
+ Score with best loss weights stage1: 0.34034800752919936
76
+ ========== fold: 0 training ==========
77
+ Epoch 1 - avg_train_loss: 0.2589 avg_val_loss: 0.4813 time: 48s
78
+ Epoch 1 - Save Best valid loss: 0.4813 Model
79
+ Epoch 2 - avg_train_loss: 0.2118 avg_val_loss: 0.5373 time: 48s
80
+ Epoch 3 - avg_train_loss: 0.1913 avg_val_loss: 0.4766 time: 47s
81
+ Epoch 3 - Save Best valid loss: 0.4766 Model
82
+ Epoch 4 - avg_train_loss: 0.1719 avg_val_loss: 0.4972 time: 47s
83
+ Epoch 5 - avg_train_loss: 0.1586 avg_val_loss: 0.5009 time: 47s
84
+ ========== fold: 0 result ==========
85
+ Score with best loss weights stage2: 0.47662054733501263
86
+ ========== fold: 1 training ==========
87
+ Epoch 1 - avg_train_loss: 0.2335 avg_val_loss: 0.4232 time: 50s
88
+ Epoch 1 - Save Best valid loss: 0.4232 Model
89
+ Epoch 2 - avg_train_loss: 0.1913 avg_val_loss: 0.4603 time: 48s
90
+ Epoch 3 - avg_train_loss: 0.1755 avg_val_loss: 0.4866 time: 49s
91
+ Epoch 4 - avg_train_loss: 0.1574 avg_val_loss: 0.4770 time: 49s
92
+ Epoch 5 - avg_train_loss: 0.1445 avg_val_loss: 0.4739 time: 48s
93
+ ========== fold: 1 result ==========
94
+ Score with best loss weights stage2: 0.4232155225685631
95
+ ========== fold: 2 training ==========
96
+ Epoch 1 - avg_train_loss: 0.2305 avg_val_loss: 0.4416 time: 50s
97
+ Epoch 1 - Save Best valid loss: 0.4416 Model
98
+ Epoch 2 - avg_train_loss: 0.1891 avg_val_loss: 0.4643 time: 49s
99
+ Epoch 3 - avg_train_loss: 0.1665 avg_val_loss: 0.4959 time: 49s
100
+ Epoch 4 - avg_train_loss: 0.1552 avg_val_loss: 0.4505 time: 49s
101
+ Epoch 5 - avg_train_loss: 0.1433 avg_val_loss: 0.4583 time: 49s
102
+ ========== fold: 2 result ==========
103
+ Score with best loss weights stage2: 0.4416244997448457
104
+ ========== fold: 3 training ==========
105
+ Epoch 1 - avg_train_loss: 0.2756 avg_val_loss: 0.4538 time: 50s
106
+ Epoch 1 - Save Best valid loss: 0.4538 Model
107
+ Epoch 2 - avg_train_loss: 0.2203 avg_val_loss: 0.4531 time: 49s
108
+ Epoch 2 - Save Best valid loss: 0.4531 Model
109
+ Epoch 3 - avg_train_loss: 0.1964 avg_val_loss: 0.4876 time: 50s
110
+ Epoch 4 - avg_train_loss: 0.1778 avg_val_loss: 0.4753 time: 49s
111
+ Epoch 5 - avg_train_loss: 0.1682 avg_val_loss: 0.4917 time: 49s
112
+ ========== fold: 3 result ==========
113
+ Score with best loss weights stage2: 0.453083156121616
114
+ ========== fold: 4 training ==========
115
+ Epoch 1 - avg_train_loss: 0.2741 avg_val_loss: 0.4381 time: 50s
116
+ Epoch 1 - Save Best valid loss: 0.4381 Model
117
+ Epoch 2 - avg_train_loss: 0.2243 avg_val_loss: 0.4424 time: 49s
118
+ Epoch 3 - avg_train_loss: 0.2020 avg_val_loss: 0.4471 time: 49s
119
+ Epoch 4 - avg_train_loss: 0.1878 avg_val_loss: 0.4826 time: 50s
120
+ Epoch 5 - avg_train_loss: 0.1698 avg_val_loss: 0.4790 time: 49s
121
+ ========== fold: 4 result ==========
122
+ Score with best loss weights stage2: 0.4381120401343222
123
+ ========== CV ==========
124
+ Score with best loss weights stage2: 0.44653115318087194