jaytonde05 commited on
Commit
a0dd949
·
verified ·
1 Parent(s): d9083bd

Upload HMS_EXP_4_DATASET.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. HMS_EXP_4_DATASET.py +90 -0
HMS_EXP_4_DATASET.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class CustomDataset(Dataset):
2
+ def __init__(
3
+ self,
4
+ df : pd.DataFrame,
5
+ augment : bool = False,
6
+ mode : str = 'train',
7
+ specs : Dict[int, np.ndarray] = spectrograms,
8
+ eeg_specs: Dict[int, np.ndarray] = all_eegs
9
+ ):
10
+ self.df = df
11
+ self.augment = augment
12
+ self.mode = mode
13
+ self.spectograms = spectrograms
14
+ self.eeg_spectograms = eeg_specs
15
+
16
+ def __len__(self):
17
+ """
18
+ Denotes the number of batches per epoch.
19
+ """
20
+ return len(self.df)
21
+
22
+ def __getitem__(self, index):
23
+ """
24
+ Generate one batch of data.
25
+ """
26
+ X, y = self.__data_generation(index)
27
+ if self.augment:
28
+ X = self.__transform(X)
29
+ return {"spectrogram":torch.tensor(X, dtype=torch.float32), "labels":torch.tensor(y, dtype=torch.float32)}
30
+
31
+ def __data_generation(self, index):
32
+ """
33
+ Generates data containing batch_size samples.
34
+ """
35
+ X = np.zeros((128, 256, 8), dtype='float32')
36
+ y = np.zeros(6, dtype='float32')
37
+ img = np.ones((128,256), dtype='float32')
38
+ row = self.df.iloc[index]
39
+ if self.mode=='test':
40
+ r = 0
41
+ else:
42
+ r = int(row['spectrogram_label_offset_seconds'] // 2)
43
+
44
+ for region in range(4):
45
+ img = self.spectograms[row.spectrogram_id][r:r+300, region*100:(region+1)*100].T
46
+
47
+ # Log transform spectogram
48
+ img = np.clip(img, np.exp(-4), np.exp(8))
49
+ img = np.log(img)
50
+
51
+ # Standarize per image
52
+ ep = 1e-6
53
+ mu = np.nanmean(img.flatten())
54
+ std = np.nanstd(img.flatten())
55
+ img = (img-mu)/(std+ep)
56
+ img = np.nan_to_num(img, nan=0.0)
57
+ X[14:-14, :, region] = img[:, 22:-22] / 2.0
58
+ img = self.eeg_spectograms[row.label_id]
59
+ X[:, :, 4:] = img
60
+
61
+ if self.mode != 'test':
62
+ y = row[TARGETS].values.astype(np.float32)
63
+
64
+ return X, y
65
+
66
+ def __transform(self, img):
67
+ params1 = {
68
+ "num_masks_x" : 1,
69
+ "mask_x_length": (0, 20), # This line changed from fixed to a range
70
+ "fill_value" : (0, 1, 2, 3, 4, 5, 6, 7),
71
+ }
72
+ params2 = {
73
+ "num_masks_y" : 1,
74
+ "mask_y_length": (0, 20),
75
+ "fill_value" : (0, 1, 2, 3, 4, 5, 6, 7),
76
+ }
77
+ params3 = {
78
+ "num_masks_x" : (2, 4),
79
+ "num_masks_y" : 5,
80
+ "mask_y_length": 8,
81
+ "mask_x_length": (10, 20),
82
+ "fill_value" : (0, 1, 2, 3, 4, 5, 6, 7),
83
+ }
84
+
85
+ transforms = A.Compose([
86
+ A.XYMasking(**params1, p=0.3),
87
+ A.XYMasking(**params2, p=0.3),
88
+ A.XYMasking(**params3, p=0.3),
89
+ ])
90
+ return transforms(image=img)['image']