jazzmacedo
commited on
Commit
•
bef29fa
1
Parent(s):
f2204f5
chore: add model and update readme
Browse files- README.md +105 -1
- config.json +110 -0
- pytorch_model.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,107 @@
|
|
1 |
---
|
2 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-classification
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- imagefolder
|
9 |
+
model-index:
|
10 |
+
- name: vegetables-detector
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9721
|
25 |
+
language:
|
26 |
+
- en
|
27 |
+
pipeline_tag: image-classification
|
28 |
---
|
29 |
+
|
30 |
+
# Vegetables Detector
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50).
|
33 |
+
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
|
36 |
+
- Loss: 0.0014
|
37 |
+
- Accuracy: 0.9721
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
This Model is a exploration test using the base model resnet-50 from microsoft.
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
This Model was trained with a very small dataset
|
46 |
+
[kritikseth/fruit-and-vegetable-image-recognition](https://www.kaggle.com/datasets/kritikseth/fruit-and-vegetable-image-recognition) and it was created to validate the resnet-50 fine-tuning capabilities
|
47 |
+
|
48 |
+
### How to use
|
49 |
+
|
50 |
+
Here is how to use this model to classify an image:
|
51 |
+
|
52 |
+
```python
|
53 |
+
import cv2
|
54 |
+
import torch
|
55 |
+
import torchvision.transforms as transforms
|
56 |
+
from transformers import AutoModelForImageClassification
|
57 |
+
from PIL import Image
|
58 |
+
|
59 |
+
# Load the saved model and tokenizer
|
60 |
+
model = AutoModelForImageClassification.from_pretrained("jazzmacedo/vegetables-detector")
|
61 |
+
|
62 |
+
# Get the list of labels from the model's configuration
|
63 |
+
labels = list(model.config.id2label.values())
|
64 |
+
|
65 |
+
# Define the preprocessing transformation
|
66 |
+
preprocess = transforms.Compose([
|
67 |
+
transforms.Resize((224, 224)),
|
68 |
+
transforms.ToTensor(),
|
69 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
70 |
+
])
|
71 |
+
|
72 |
+
image_path = "path/to/your/image.jpg"
|
73 |
+
image = cv2.imread(image_path)
|
74 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
75 |
+
pil_image = Image.fromarray(image) # Convert NumPy array to PIL image
|
76 |
+
input_tensor = preprocess(pil_image).unsqueeze(0)
|
77 |
+
|
78 |
+
# Run the image through the model
|
79 |
+
outputs = model(input_tensor)
|
80 |
+
|
81 |
+
# Get the predicted label index
|
82 |
+
predicted_idx = torch.argmax(outputs.logits, dim=1).item()
|
83 |
+
|
84 |
+
# Get the predicted label text
|
85 |
+
predicted_label = labels[predicted_idx]
|
86 |
+
|
87 |
+
# Print the predicted label
|
88 |
+
print("Detected label:", predicted_label)
|
89 |
+
```
|
90 |
+
|
91 |
+
## Training and evaluation data
|
92 |
+
|
93 |
+
Dataset Source: https://www.kaggle.com/datasets/kritikseth/fruit-and-vegetable-image-recognition
|
94 |
+
|
95 |
+
## Training procedure
|
96 |
+
|
97 |
+
### Training hyperparameters
|
98 |
+
|
99 |
+
The following hyperparameters were used during training:
|
100 |
+
|
101 |
+
- learning_rate: 0.001
|
102 |
+
- train_batch_size: 32
|
103 |
+
- eval_batch_size: 32
|
104 |
+
- seed: 42
|
105 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
106 |
+
- lr_scheduler_type: linear
|
107 |
+
- num_epochs: 10
|
config.json
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/resnet-50",
|
3 |
+
"architectures": [
|
4 |
+
"ResNetForImageClassification"
|
5 |
+
],
|
6 |
+
"depths": [
|
7 |
+
3,
|
8 |
+
4,
|
9 |
+
6,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"downsample_in_first_stage": false,
|
13 |
+
"embedding_size": 64,
|
14 |
+
"hidden_act": "relu",
|
15 |
+
"hidden_sizes": [
|
16 |
+
256,
|
17 |
+
512,
|
18 |
+
1024,
|
19 |
+
2048
|
20 |
+
],
|
21 |
+
"id2label": {
|
22 |
+
"0": "apple",
|
23 |
+
"1": "banana",
|
24 |
+
"2": "beetroot",
|
25 |
+
"3": "bell pepper",
|
26 |
+
"4": "cabbage",
|
27 |
+
"5": "capsicum",
|
28 |
+
"6": "carrot",
|
29 |
+
"7": "cauliflower",
|
30 |
+
"8": "chilli pepper",
|
31 |
+
"9": "corn",
|
32 |
+
"10": "cucumber",
|
33 |
+
"11": "eggplant",
|
34 |
+
"12": "garlic",
|
35 |
+
"13": "ginger",
|
36 |
+
"14": "grapes",
|
37 |
+
"15": "jalepeno",
|
38 |
+
"16": "kiwi",
|
39 |
+
"17": "lemon",
|
40 |
+
"18": "lettuce",
|
41 |
+
"19": "mango",
|
42 |
+
"20": "onion",
|
43 |
+
"21": "orange",
|
44 |
+
"22": "paprika",
|
45 |
+
"23": "pear",
|
46 |
+
"24": "peas",
|
47 |
+
"25": "pineapple",
|
48 |
+
"26": "pomegranate",
|
49 |
+
"27": "potato",
|
50 |
+
"28": "raddish",
|
51 |
+
"29": "soy beans",
|
52 |
+
"30": "spinach",
|
53 |
+
"31": "sweetcorn",
|
54 |
+
"32": "sweetpotato",
|
55 |
+
"33": "tomato",
|
56 |
+
"34": "turnip",
|
57 |
+
"35": "watermelon"
|
58 |
+
},
|
59 |
+
"label2id": {
|
60 |
+
"apple": 0,
|
61 |
+
"banana": 1,
|
62 |
+
"beetroot": 2,
|
63 |
+
"bell pepper": 3,
|
64 |
+
"cabbage": 4,
|
65 |
+
"capsicum": 5,
|
66 |
+
"carrot": 6,
|
67 |
+
"cauliflower": 7,
|
68 |
+
"chilli pepper": 8,
|
69 |
+
"corn": 9,
|
70 |
+
"cucumber": 10,
|
71 |
+
"eggplant": 11,
|
72 |
+
"garlic": 12,
|
73 |
+
"ginger": 13,
|
74 |
+
"grapes": 14,
|
75 |
+
"jalepeno": 15,
|
76 |
+
"kiwi": 16,
|
77 |
+
"lemon": 17,
|
78 |
+
"lettuce": 18,
|
79 |
+
"mango": 19,
|
80 |
+
"onion": 20,
|
81 |
+
"orange": 21,
|
82 |
+
"paprika": 22,
|
83 |
+
"pear": 23,
|
84 |
+
"peas": 24,
|
85 |
+
"pineapple": 25,
|
86 |
+
"pomegranate": 26,
|
87 |
+
"potato": 27,
|
88 |
+
"raddish": 28,
|
89 |
+
"soy beans": 29,
|
90 |
+
"spinach": 30,
|
91 |
+
"sweetcorn": 31,
|
92 |
+
"sweetpotato": 32,
|
93 |
+
"tomato": 33,
|
94 |
+
"turnip": 34,
|
95 |
+
"watermelon": 35
|
96 |
+
},
|
97 |
+
"layer_type": "bottleneck",
|
98 |
+
"model_type": "resnet",
|
99 |
+
"num_channels": 3,
|
100 |
+
"out_features": null,
|
101 |
+
"stage_names": [
|
102 |
+
"stem",
|
103 |
+
"stage1",
|
104 |
+
"stage2",
|
105 |
+
"stage3",
|
106 |
+
"stage4"
|
107 |
+
],
|
108 |
+
"torch_dtype": "float32",
|
109 |
+
"transformers_version": "4.26.1"
|
110 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cc4eeb24292742187b926b6d573f5b7b9fb76b12bd8efd8c92b615d9916989c3
|
3 |
+
size 94649165
|