End of training
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: bert-base-chinese
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: bert-base-chinese-finetuned-question-answering-8
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# bert-base-chinese-finetuned-question-answering-8
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.0682
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
+
- lr_scheduler_type: linear
|
43 |
+
- num_epochs: 3
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:------:|:----:|:---------------:|
|
49 |
+
| 1.6873 | 0.1842 | 500 | 1.1089 |
|
50 |
+
| 1.1046 | 0.3683 | 1000 | 0.9349 |
|
51 |
+
| 0.9793 | 0.5525 | 1500 | 0.9402 |
|
52 |
+
| 0.9477 | 0.7366 | 2000 | 0.8424 |
|
53 |
+
| 0.8951 | 0.9208 | 2500 | 0.8333 |
|
54 |
+
| 0.6411 | 1.1050 | 3000 | 0.9014 |
|
55 |
+
| 0.4946 | 1.2891 | 3500 | 0.9121 |
|
56 |
+
| 0.4887 | 1.4733 | 4000 | 0.8586 |
|
57 |
+
| 0.4875 | 1.6575 | 4500 | 0.9060 |
|
58 |
+
| 0.4483 | 1.8416 | 5000 | 0.7990 |
|
59 |
+
| 0.4079 | 2.0258 | 5500 | 0.9980 |
|
60 |
+
| 0.2337 | 2.2099 | 6000 | 1.0852 |
|
61 |
+
| 0.2342 | 2.3941 | 6500 | 1.0850 |
|
62 |
+
| 0.2239 | 2.5783 | 7000 | 1.0937 |
|
63 |
+
| 0.1853 | 2.7624 | 7500 | 1.1032 |
|
64 |
+
| 0.2009 | 2.9466 | 8000 | 1.0682 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.44.2
|
70 |
+
- Pytorch 2.4.1+cu121
|
71 |
+
- Datasets 3.0.0
|
72 |
+
- Tokenizers 0.19.1
|