--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - trl - cpo - generated_from_trainer model-index: - name: llama3.1-cpo-full-0912 results: [] --- # llama3.1-cpo-full-0912 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6007 - Rewards/chosen: -15.6505 - Rewards/rejected: -16.3448 - Rewards/accuracies: 0.6370 - Rewards/margins: 0.6943 - Logps/rejected: -163.4479 - Logps/chosen: -156.5048 - Logits/rejected: -0.3811 - Logits/chosen: -0.4072 - Nll Loss: 0.4277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| | 1.9362 | 0.2311 | 100 | 1.7930 | -14.9339 | -15.2848 | 0.5761 | 0.3508 | -152.8475 | -149.3394 | -0.4123 | -0.4378 | 0.4067 | | 1.7019 | 0.4623 | 200 | 1.6786 | -15.4303 | -16.0131 | 0.6087 | 0.5828 | -160.1311 | -154.3027 | -0.3358 | -0.3580 | 0.4193 | | 1.6388 | 0.6934 | 300 | 1.6233 | -15.5465 | -16.2127 | 0.6130 | 0.6662 | -162.1269 | -155.4650 | -0.3582 | -0.3828 | 0.4230 | | 1.632 | 0.9246 | 400 | 1.6007 | -15.6505 | -16.3448 | 0.6370 | 0.6943 | -163.4479 | -156.5048 | -0.3811 | -0.4072 | 0.4277 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.19.1