Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,36 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
OpenAI's GPT2-Small SAEs reformatted for easy loading from SAE Lens.
|
6 |
+
|
7 |
+
Links
|
8 |
+
- [Paper](https://cdn.openai.com/papers/sparse-autoencoders.pdf)
|
9 |
+
- [Original File Loading](https://github.com/openai/sparse_autoencoder/blob/lg-training/sparse_autoencoder/paths.py)
|
10 |
+
|
11 |
+
```python
|
12 |
+
import torch
|
13 |
+
from transformer_lens import HookedTransformer
|
14 |
+
from sae_lens import SAE, ActivationsStore
|
15 |
+
|
16 |
+
torch.set_grad_enabled(False)
|
17 |
+
model = HookedTransformer.from_pretrained("gpt2-small")
|
18 |
+
sae, cfg, sparsity = SAE.from_pretrained(
|
19 |
+
"gpt2-small-resid-post-v5-32k", # to see the list of available releases, go to: https://github.com/jbloomAus/SAELens/blob/main/sae_lens/pretrained_saes.yaml
|
20 |
+
"blocks.11.hook_resid_post" # change this to another specific SAE ID in the release if desired.
|
21 |
+
)
|
22 |
+
|
23 |
+
# For loading activations or tokens from the training dataset.
|
24 |
+
activation_store = ActivationsStore.from_sae(
|
25 |
+
model=model,
|
26 |
+
sae=sae,
|
27 |
+
streaming=True,
|
28 |
+
# fairly conservative parameters here so can use same for larger
|
29 |
+
# models without running out of memory.
|
30 |
+
store_batch_size_prompts=8,
|
31 |
+
train_batch_size_tokens=4096,
|
32 |
+
n_batches_in_buffer=4,
|
33 |
+
device=device,
|
34 |
+
)
|
35 |
+
|
36 |
+
```
|