File size: 730 Bytes
d5370a8
 
44ce49c
 
 
 
d5370a8
44ce49c
 
1
2
3
4
5
6
7
8
9
10
---
license: mit
datasets:
- Skylion007/openwebtext
language:
- en
---

We trained 12 Sparse Autoencoders on the Residual Stream of GPT2-small. Each of these contains ~ 25k features as we used an expansion factor of 32 and the residual stream dimension of GPT2 has 768 dimensions. We trained with an L1 coefficient of 8e-5 and learning rate of 4e-4 for 300 Million tokens, storing a buffer of ~500k tokens from OpenWebText which is refilled and shuffled whenever 50% of the tokens are used. To avoid dead neurons, we use ghost gradients. Our encoder/decoder weights are untied but we do use a tied decoder bias initialized at the geometric median per [Bricken et al](https://transformer-circuits.pub/2023/monosemantic-features).