Fix activation and use rotary embeddings
Browse files- config.json +4 -2
- decoder_only_t5/modeling.py +425 -32
config.json
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
"decoder_start_token_id": 0,
|
10 |
"pad_token_id": 1,
|
11 |
"eos_token_id": 3,
|
12 |
-
"feed_forward_proj": "gated-
|
13 |
"initializer_factor": 1.0,
|
14 |
"is_encoder_decoder": false,
|
15 |
"is_decoder_only": true,
|
@@ -29,5 +29,7 @@
|
|
29 |
"vocab_size": 256512,
|
30 |
"parallel_layers": true,
|
31 |
"has_relative_attention_bias": false,
|
32 |
-
"multi_query_attention": true
|
|
|
|
|
33 |
}
|
|
|
9 |
"decoder_start_token_id": 0,
|
10 |
"pad_token_id": 1,
|
11 |
"eos_token_id": 3,
|
12 |
+
"feed_forward_proj": "gated-swish",
|
13 |
"initializer_factor": 1.0,
|
14 |
"is_encoder_decoder": false,
|
15 |
"is_decoder_only": true,
|
|
|
29 |
"vocab_size": 256512,
|
30 |
"parallel_layers": true,
|
31 |
"has_relative_attention_bias": false,
|
32 |
+
"multi_query_attention": true,
|
33 |
+
"use_rotary_embedding": true,
|
34 |
+
"rotary_embedding_max_timescale": 1000
|
35 |
}
|
decoder_only_t5/modeling.py
CHANGED
@@ -36,6 +36,84 @@ class DecoderOnlyT5LayerFF(modeling_t5.T5LayerFF):
|
|
36 |
self.dropout = nn.Dropout(config.dropout_rate)
|
37 |
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# https://github.com/huggingface/transformers/blob/7ee995fd9c692761c4601ddbffa2ac2ec9f27b0b/src/transformers/models/llama/modeling_llama.py#L263
|
40 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
41 |
"""
|
@@ -72,9 +150,16 @@ class DecoderOnlyT5Attention(modeling_t5.T5Attention):
|
|
72 |
self.dropout = config.dropout_rate
|
73 |
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
74 |
self.kv_inner_dim = self.n_kv_heads * self.key_value_proj_dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
# Mesh TensorFlow initialization to avoid scaling before softmax
|
77 |
-
|
78 |
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
79 |
self.k = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
|
80 |
self.v = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
|
@@ -93,6 +178,7 @@ class DecoderOnlyT5Attention(modeling_t5.T5Attention):
|
|
93 |
mask=None,
|
94 |
key_value_states=None,
|
95 |
position_bias=None,
|
|
|
96 |
past_key_value=None,
|
97 |
layer_head_mask=None,
|
98 |
query_length=None,
|
@@ -144,21 +230,25 @@ class DecoderOnlyT5Attention(modeling_t5.T5Attention):
|
|
144 |
# cross-attn
|
145 |
# (batch_size, n_kv_heads, seq_length, dim_per_head)
|
146 |
hidden_states = shape(proj_layer(key_value_states), self.n_kv_heads)
|
|
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
162 |
return hidden_states
|
163 |
|
164 |
# get query states
|
@@ -167,24 +257,35 @@ class DecoderOnlyT5Attention(modeling_t5.T5Attention):
|
|
167 |
) # (batch_size, n_heads, seq_length, dim_per_head)
|
168 |
|
169 |
# get key/value states
|
170 |
-
key_states =
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
key_value_states,
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
value_states = repeat_kv(
|
180 |
-
project(
|
181 |
-
hidden_states,
|
182 |
-
self.v,
|
183 |
key_value_states,
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
)
|
|
|
188 |
|
189 |
# compute scores
|
190 |
scores = torch.matmul(
|
@@ -266,6 +367,7 @@ class DecoderOnlyT5LayerSelfAttention(modeling_t5.T5LayerSelfAttention):
|
|
266 |
hidden_states,
|
267 |
attention_mask=None,
|
268 |
position_bias=None,
|
|
|
269 |
layer_head_mask=None,
|
270 |
past_key_value=None,
|
271 |
use_cache=False,
|
@@ -279,6 +381,7 @@ class DecoderOnlyT5LayerSelfAttention(modeling_t5.T5LayerSelfAttention):
|
|
279 |
x,
|
280 |
mask=attention_mask,
|
281 |
position_bias=position_bias,
|
|
|
282 |
layer_head_mask=layer_head_mask,
|
283 |
past_key_value=past_key_value,
|
284 |
use_cache=use_cache,
|
@@ -320,6 +423,7 @@ class DecoderOnlyT5Block(modeling_t5.T5Block):
|
|
320 |
hidden_states,
|
321 |
attention_mask=None,
|
322 |
position_bias=None,
|
|
|
323 |
encoder_hidden_states=None,
|
324 |
encoder_attention_mask=None,
|
325 |
encoder_decoder_position_bias=None,
|
@@ -361,6 +465,7 @@ class DecoderOnlyT5Block(modeling_t5.T5Block):
|
|
361 |
x,
|
362 |
attention_mask=attention_mask,
|
363 |
position_bias=position_bias,
|
|
|
364 |
layer_head_mask=layer_head_mask,
|
365 |
past_key_value=self_attn_past_key_value,
|
366 |
use_cache=use_cache,
|
@@ -398,6 +503,7 @@ class DecoderOnlyT5Block(modeling_t5.T5Block):
|
|
398 |
key_value_states=encoder_hidden_states,
|
399 |
attention_mask=encoder_attention_mask,
|
400 |
position_bias=encoder_decoder_position_bias,
|
|
|
401 |
layer_head_mask=cross_attn_layer_head_mask,
|
402 |
past_key_value=cross_attn_past_key_value,
|
403 |
query_length=query_length,
|
@@ -486,6 +592,284 @@ class DecoderOnlyT5Stack(modeling_t5.T5Stack):
|
|
486 |
self.device_map = None
|
487 |
self.gradient_checkpointing = False
|
488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
|
490 |
class DecoderOnlyT5Model(modeling_t5.T5ForConditionalGeneration):
|
491 |
def __init__(self, config: DecoderOnlyT5Config):
|
@@ -513,6 +897,14 @@ class DecoderOnlyT5Model(modeling_t5.T5ForConditionalGeneration):
|
|
513 |
self.model_parallel = False
|
514 |
self.device_map = None
|
515 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
@add_start_docstrings_to_model_forward(modeling_t5.T5_INPUTS_DOCSTRING)
|
517 |
@replace_return_docstrings(
|
518 |
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
@@ -520,8 +912,8 @@ class DecoderOnlyT5Model(modeling_t5.T5ForConditionalGeneration):
|
|
520 |
def forward(
|
521 |
self,
|
522 |
input_ids: Optional[torch.LongTensor] = None,
|
523 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
524 |
position_ids: Optional[torch.LongTensor] = None,
|
|
|
525 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
526 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
527 |
labels: Optional[torch.LongTensor] = None,
|
@@ -560,6 +952,7 @@ class DecoderOnlyT5Model(modeling_t5.T5ForConditionalGeneration):
|
|
560 |
# Decode
|
561 |
outputs = self.decoder(
|
562 |
input_ids=input_ids,
|
|
|
563 |
attention_mask=attention_mask,
|
564 |
inputs_embeds=inputs_embeds,
|
565 |
past_key_values=past_key_values,
|
|
|
36 |
self.dropout = nn.Dropout(config.dropout_rate)
|
37 |
|
38 |
|
39 |
+
# LlamaRotaryEmbedding
|
40 |
+
class T5DecoderOnlyRotaryEmbedding(nn.Module):
|
41 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
self.dim = dim
|
45 |
+
self.max_position_embeddings = max_position_embeddings
|
46 |
+
self.base = base
|
47 |
+
inv_freq = 1.0 / (
|
48 |
+
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
49 |
+
)
|
50 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
51 |
+
|
52 |
+
# Build here to make `torch.jit.trace` work.
|
53 |
+
self._set_cos_sin_cache(
|
54 |
+
seq_len=max_position_embeddings,
|
55 |
+
device=self.inv_freq.device,
|
56 |
+
dtype=torch.get_default_dtype(),
|
57 |
+
)
|
58 |
+
|
59 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
60 |
+
self.max_seq_len_cached = seq_len
|
61 |
+
t = torch.arange(
|
62 |
+
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
|
63 |
+
)
|
64 |
+
|
65 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
66 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
67 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
68 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
69 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
70 |
+
|
71 |
+
def forward(self, x, seq_len=None):
|
72 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
73 |
+
if seq_len > self.max_seq_len_cached:
|
74 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
75 |
+
|
76 |
+
return (
|
77 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
78 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def rotate_half(x):
|
83 |
+
"""Rotates half the hidden dims of the input."""
|
84 |
+
x1 = x[..., : x.shape[-1] // 2]
|
85 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
86 |
+
return torch.cat((-x2, x1), dim=-1)
|
87 |
+
|
88 |
+
|
89 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
90 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
q (`torch.Tensor`): The query tensor.
|
94 |
+
k (`torch.Tensor`): The key tensor.
|
95 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
96 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
97 |
+
position_ids (`torch.Tensor`):
|
98 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
99 |
+
used to pass offsetted position ids when working with a KV-cache.
|
100 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
101 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
102 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
103 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
104 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
105 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
106 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
107 |
+
Returns:
|
108 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
109 |
+
"""
|
110 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
111 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
112 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
113 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
114 |
+
return q_embed, k_embed
|
115 |
+
|
116 |
+
|
117 |
# https://github.com/huggingface/transformers/blob/7ee995fd9c692761c4601ddbffa2ac2ec9f27b0b/src/transformers/models/llama/modeling_llama.py#L263
|
118 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
119 |
"""
|
|
|
150 |
self.dropout = config.dropout_rate
|
151 |
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
152 |
self.kv_inner_dim = self.n_kv_heads * self.key_value_proj_dim
|
153 |
+
if config.use_rotary_embedding:
|
154 |
+
self.rotary_embedding = T5DecoderOnlyRotaryEmbedding(
|
155 |
+
self.key_value_proj_dim,
|
156 |
+
max_position_embeddings=config.relative_attention_max_distance,
|
157 |
+
base=config.rotary_embedding_max_timescale,
|
158 |
+
)
|
159 |
+
else:
|
160 |
+
self.rotary_embedding = None
|
161 |
|
162 |
# Mesh TensorFlow initialization to avoid scaling before softmax
|
|
|
163 |
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
164 |
self.k = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
|
165 |
self.v = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
|
|
|
178 |
mask=None,
|
179 |
key_value_states=None,
|
180 |
position_bias=None,
|
181 |
+
position_ids=None,
|
182 |
past_key_value=None,
|
183 |
layer_head_mask=None,
|
184 |
query_length=None,
|
|
|
230 |
# cross-attn
|
231 |
# (batch_size, n_kv_heads, seq_length, dim_per_head)
|
232 |
hidden_states = shape(proj_layer(key_value_states), self.n_kv_heads)
|
233 |
+
return hidden_states
|
234 |
|
235 |
+
def concat_past_key_value(hidden_states, past_key_value, key_value_states):
|
236 |
+
if key_value_states is None:
|
237 |
+
# self-attn
|
238 |
+
# (batch_size, n_kv_heads, key_length, dim_per_head)
|
239 |
+
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
240 |
+
elif past_key_value.shape[2] != key_value_states.shape[1]:
|
241 |
+
# checking that the `sequence_length` of the `past_key_value` is the same as
|
242 |
+
# the provided `key_value_states` to support prefix tuning
|
243 |
+
# cross-attn
|
244 |
+
# (batch_size, n_kv_heads, seq_length, dim_per_head)
|
245 |
+
raise NotImplementedError(
|
246 |
+
"cross attention with RoPE and past KV is not implemented"
|
247 |
+
)
|
248 |
+
# hidden_states = shape(proj_layer(key_value_states), self.n_kv_heads)
|
249 |
+
else:
|
250 |
+
# cross-attn
|
251 |
+
hidden_states = past_key_value
|
252 |
return hidden_states
|
253 |
|
254 |
# get query states
|
|
|
257 |
) # (batch_size, n_heads, seq_length, dim_per_head)
|
258 |
|
259 |
# get key/value states
|
260 |
+
key_states = project(hidden_states, self.k, key_value_states, past_key_value)
|
261 |
+
value_states = project(hidden_states, self.v, key_value_states, past_key_value)
|
262 |
+
|
263 |
+
# RoPE
|
264 |
+
if self.rotary_embedding is not None:
|
265 |
+
kv_seq_len = key_states.shape[-2]
|
266 |
+
if past_key_value:
|
267 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
268 |
+
cos, sin = self.rotary_embedding(query_states, seq_len=kv_seq_len)
|
269 |
+
query_states, key_states = apply_rotary_pos_emb(
|
270 |
+
query_states, key_states, cos, sin, position_ids
|
271 |
+
)
|
272 |
+
|
273 |
+
# concat past
|
274 |
+
if past_key_value is not None:
|
275 |
+
key_states = concat_past_key_value(
|
276 |
+
key_states,
|
277 |
+
past_key_value[0],
|
278 |
key_value_states,
|
279 |
+
)
|
280 |
+
value_states = concat_past_key_value(
|
281 |
+
value_states,
|
282 |
+
past_key_value[1],
|
|
|
|
|
|
|
|
|
283 |
key_value_states,
|
284 |
+
)
|
285 |
+
|
286 |
+
# MultiQueryDotProductAttention
|
287 |
+
key_states = repeat_kv(key_states, self.n_kv_groups)
|
288 |
+
value_states = repeat_kv(value_states, self.n_kv_groups)
|
289 |
|
290 |
# compute scores
|
291 |
scores = torch.matmul(
|
|
|
367 |
hidden_states,
|
368 |
attention_mask=None,
|
369 |
position_bias=None,
|
370 |
+
position_ids=None,
|
371 |
layer_head_mask=None,
|
372 |
past_key_value=None,
|
373 |
use_cache=False,
|
|
|
381 |
x,
|
382 |
mask=attention_mask,
|
383 |
position_bias=position_bias,
|
384 |
+
position_ids=position_ids,
|
385 |
layer_head_mask=layer_head_mask,
|
386 |
past_key_value=past_key_value,
|
387 |
use_cache=use_cache,
|
|
|
423 |
hidden_states,
|
424 |
attention_mask=None,
|
425 |
position_bias=None,
|
426 |
+
position_ids=None,
|
427 |
encoder_hidden_states=None,
|
428 |
encoder_attention_mask=None,
|
429 |
encoder_decoder_position_bias=None,
|
|
|
465 |
x,
|
466 |
attention_mask=attention_mask,
|
467 |
position_bias=position_bias,
|
468 |
+
position_ids=position_ids,
|
469 |
layer_head_mask=layer_head_mask,
|
470 |
past_key_value=self_attn_past_key_value,
|
471 |
use_cache=use_cache,
|
|
|
503 |
key_value_states=encoder_hidden_states,
|
504 |
attention_mask=encoder_attention_mask,
|
505 |
position_bias=encoder_decoder_position_bias,
|
506 |
+
# position_ids ?
|
507 |
layer_head_mask=cross_attn_layer_head_mask,
|
508 |
past_key_value=cross_attn_past_key_value,
|
509 |
query_length=query_length,
|
|
|
592 |
self.device_map = None
|
593 |
self.gradient_checkpointing = False
|
594 |
|
595 |
+
def forward(
|
596 |
+
self,
|
597 |
+
input_ids=None,
|
598 |
+
position_ids=None,
|
599 |
+
attention_mask=None,
|
600 |
+
encoder_hidden_states=None,
|
601 |
+
encoder_attention_mask=None,
|
602 |
+
inputs_embeds=None,
|
603 |
+
head_mask=None,
|
604 |
+
cross_attn_head_mask=None,
|
605 |
+
past_key_values=None,
|
606 |
+
use_cache=None,
|
607 |
+
output_attentions=None,
|
608 |
+
output_hidden_states=None,
|
609 |
+
return_dict=None,
|
610 |
+
):
|
611 |
+
# Model parallel
|
612 |
+
if self.model_parallel:
|
613 |
+
torch.cuda.set_device(self.first_device)
|
614 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
615 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
616 |
+
output_attentions = (
|
617 |
+
output_attentions
|
618 |
+
if output_attentions is not None
|
619 |
+
else self.config.output_attentions
|
620 |
+
)
|
621 |
+
output_hidden_states = (
|
622 |
+
output_hidden_states
|
623 |
+
if output_hidden_states is not None
|
624 |
+
else self.config.output_hidden_states
|
625 |
+
)
|
626 |
+
return_dict = (
|
627 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
628 |
+
)
|
629 |
+
|
630 |
+
if input_ids is not None and inputs_embeds is not None:
|
631 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
632 |
+
raise ValueError(
|
633 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
634 |
+
)
|
635 |
+
elif input_ids is not None:
|
636 |
+
input_shape = input_ids.size()
|
637 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
638 |
+
elif inputs_embeds is not None:
|
639 |
+
input_shape = inputs_embeds.size()[:-1]
|
640 |
+
else:
|
641 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
642 |
+
raise ValueError(
|
643 |
+
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
|
644 |
+
)
|
645 |
+
|
646 |
+
if position_ids is None:
|
647 |
+
seq_length = input_ids.shape[1]
|
648 |
+
past_key_values_length = (
|
649 |
+
0 if past_key_values is None else past_key_values[0][0].shape[2]
|
650 |
+
)
|
651 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
652 |
+
position_ids = torch.arange(
|
653 |
+
past_key_values_length,
|
654 |
+
seq_length + past_key_values_length,
|
655 |
+
dtype=torch.long,
|
656 |
+
device=device,
|
657 |
+
)
|
658 |
+
position_ids = position_ids.unsqueeze(0)
|
659 |
+
|
660 |
+
if inputs_embeds is None:
|
661 |
+
if self.embed_tokens is None:
|
662 |
+
raise ValueError(
|
663 |
+
"You have to initialize the model with valid token embeddings"
|
664 |
+
)
|
665 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
666 |
+
|
667 |
+
batch_size, seq_length = input_shape
|
668 |
+
|
669 |
+
# required mask seq length can be calculated via length of past
|
670 |
+
mask_seq_length = (
|
671 |
+
past_key_values[0][0].shape[2] + seq_length
|
672 |
+
if past_key_values is not None
|
673 |
+
else seq_length
|
674 |
+
)
|
675 |
+
|
676 |
+
if use_cache is True:
|
677 |
+
if not self.is_decoder:
|
678 |
+
raise ValueError(
|
679 |
+
f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
680 |
+
)
|
681 |
+
|
682 |
+
if attention_mask is None:
|
683 |
+
attention_mask = torch.ones(
|
684 |
+
batch_size, mask_seq_length, device=inputs_embeds.device
|
685 |
+
)
|
686 |
+
if (
|
687 |
+
self.is_decoder
|
688 |
+
and encoder_attention_mask is None
|
689 |
+
and encoder_hidden_states is not None
|
690 |
+
):
|
691 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
692 |
+
encoder_attention_mask = torch.ones(
|
693 |
+
batch_size,
|
694 |
+
encoder_seq_length,
|
695 |
+
device=inputs_embeds.device,
|
696 |
+
dtype=torch.long,
|
697 |
+
)
|
698 |
+
|
699 |
+
# initialize past_key_values with `None` if past does not exist
|
700 |
+
if past_key_values is None:
|
701 |
+
past_key_values = [None] * len(self.block)
|
702 |
+
|
703 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
704 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
705 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
706 |
+
attention_mask, input_shape
|
707 |
+
)
|
708 |
+
|
709 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
710 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
711 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
712 |
+
(
|
713 |
+
encoder_batch_size,
|
714 |
+
encoder_sequence_length,
|
715 |
+
_,
|
716 |
+
) = encoder_hidden_states.size()
|
717 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
718 |
+
if encoder_attention_mask is None:
|
719 |
+
encoder_attention_mask = torch.ones(
|
720 |
+
encoder_hidden_shape, device=inputs_embeds.device
|
721 |
+
)
|
722 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
723 |
+
encoder_attention_mask
|
724 |
+
)
|
725 |
+
else:
|
726 |
+
encoder_extended_attention_mask = None
|
727 |
+
|
728 |
+
if self.gradient_checkpointing and self.training:
|
729 |
+
if use_cache:
|
730 |
+
logger.warning_once(
|
731 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
732 |
+
)
|
733 |
+
use_cache = False
|
734 |
+
|
735 |
+
# Prepare head mask if needed
|
736 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
737 |
+
cross_attn_head_mask = self.get_head_mask(
|
738 |
+
cross_attn_head_mask, self.config.num_layers
|
739 |
+
)
|
740 |
+
present_key_value_states = () if use_cache else None
|
741 |
+
all_hidden_states = () if output_hidden_states else None
|
742 |
+
all_attentions = () if output_attentions else None
|
743 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
744 |
+
position_bias = None
|
745 |
+
encoder_decoder_position_bias = None
|
746 |
+
|
747 |
+
hidden_states = self.dropout(inputs_embeds)
|
748 |
+
|
749 |
+
for i, (layer_module, past_key_value) in enumerate(
|
750 |
+
zip(self.block, past_key_values)
|
751 |
+
):
|
752 |
+
layer_head_mask = head_mask[i]
|
753 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
754 |
+
# Model parallel
|
755 |
+
if self.model_parallel:
|
756 |
+
torch.cuda.set_device(hidden_states.device)
|
757 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
758 |
+
if attention_mask is not None:
|
759 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
760 |
+
if position_bias is not None:
|
761 |
+
position_bias = position_bias.to(hidden_states.device)
|
762 |
+
if encoder_hidden_states is not None:
|
763 |
+
encoder_hidden_states = encoder_hidden_states.to(
|
764 |
+
hidden_states.device
|
765 |
+
)
|
766 |
+
if encoder_extended_attention_mask is not None:
|
767 |
+
encoder_extended_attention_mask = (
|
768 |
+
encoder_extended_attention_mask.to(hidden_states.device)
|
769 |
+
)
|
770 |
+
if encoder_decoder_position_bias is not None:
|
771 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(
|
772 |
+
hidden_states.device
|
773 |
+
)
|
774 |
+
if layer_head_mask is not None:
|
775 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
776 |
+
if cross_attn_layer_head_mask is not None:
|
777 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(
|
778 |
+
hidden_states.device
|
779 |
+
)
|
780 |
+
if output_hidden_states:
|
781 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
782 |
+
|
783 |
+
if self.gradient_checkpointing and self.training:
|
784 |
+
layer_outputs = self._gradient_checkpointing_func(
|
785 |
+
layer_module.forward,
|
786 |
+
hidden_states,
|
787 |
+
extended_attention_mask,
|
788 |
+
position_bias,
|
789 |
+
encoder_hidden_states,
|
790 |
+
encoder_extended_attention_mask,
|
791 |
+
encoder_decoder_position_bias,
|
792 |
+
layer_head_mask,
|
793 |
+
cross_attn_layer_head_mask,
|
794 |
+
None, # past_key_value is always None with gradient checkpointing
|
795 |
+
use_cache,
|
796 |
+
output_attentions,
|
797 |
+
)
|
798 |
+
else:
|
799 |
+
layer_outputs = layer_module(
|
800 |
+
hidden_states,
|
801 |
+
attention_mask=extended_attention_mask,
|
802 |
+
position_bias=position_bias,
|
803 |
+
position_ids=position_ids,
|
804 |
+
encoder_hidden_states=encoder_hidden_states,
|
805 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
806 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
807 |
+
layer_head_mask=layer_head_mask,
|
808 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
809 |
+
past_key_value=past_key_value,
|
810 |
+
use_cache=use_cache,
|
811 |
+
output_attentions=output_attentions,
|
812 |
+
)
|
813 |
+
|
814 |
+
# layer_outputs is a tuple with:
|
815 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
816 |
+
if use_cache is False:
|
817 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
818 |
+
|
819 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
820 |
+
|
821 |
+
# We share the position biases between the layers - the first layer store them
|
822 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
823 |
+
# (cross-attention position bias), (cross-attention weights)
|
824 |
+
position_bias = layer_outputs[2]
|
825 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
826 |
+
encoder_decoder_position_bias = layer_outputs[
|
827 |
+
4 if output_attentions else 3
|
828 |
+
]
|
829 |
+
# append next layer key value states
|
830 |
+
if use_cache:
|
831 |
+
present_key_value_states = present_key_value_states + (
|
832 |
+
present_key_value_state,
|
833 |
+
)
|
834 |
+
|
835 |
+
if output_attentions:
|
836 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
837 |
+
if self.is_decoder:
|
838 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
839 |
+
|
840 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
841 |
+
if self.model_parallel:
|
842 |
+
for k, v in self.device_map.items():
|
843 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
844 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
845 |
+
|
846 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
847 |
+
hidden_states = self.dropout(hidden_states)
|
848 |
+
|
849 |
+
# Add last layer
|
850 |
+
if output_hidden_states:
|
851 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
852 |
+
|
853 |
+
if not return_dict:
|
854 |
+
return tuple(
|
855 |
+
v
|
856 |
+
for v in [
|
857 |
+
hidden_states,
|
858 |
+
present_key_value_states,
|
859 |
+
all_hidden_states,
|
860 |
+
all_attentions,
|
861 |
+
all_cross_attentions,
|
862 |
+
]
|
863 |
+
if v is not None
|
864 |
+
)
|
865 |
+
return modeling_t5.BaseModelOutputWithPastAndCrossAttentions(
|
866 |
+
last_hidden_state=hidden_states,
|
867 |
+
past_key_values=present_key_value_states,
|
868 |
+
hidden_states=all_hidden_states,
|
869 |
+
attentions=all_attentions,
|
870 |
+
cross_attentions=all_cross_attentions,
|
871 |
+
)
|
872 |
+
|
873 |
|
874 |
class DecoderOnlyT5Model(modeling_t5.T5ForConditionalGeneration):
|
875 |
def __init__(self, config: DecoderOnlyT5Config):
|
|
|
897 |
self.model_parallel = False
|
898 |
self.device_map = None
|
899 |
|
900 |
+
def _tie_weights(self):
|
901 |
+
if not self.config.tie_word_embeddings:
|
902 |
+
return
|
903 |
+
if self.encoder:
|
904 |
+
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
|
905 |
+
if self.decoder:
|
906 |
+
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
|
907 |
+
|
908 |
@add_start_docstrings_to_model_forward(modeling_t5.T5_INPUTS_DOCSTRING)
|
909 |
@replace_return_docstrings(
|
910 |
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
|
|
|
912 |
def forward(
|
913 |
self,
|
914 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
915 |
position_ids: Optional[torch.LongTensor] = None,
|
916 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
917 |
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
918 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
919 |
labels: Optional[torch.LongTensor] = None,
|
|
|
952 |
# Decode
|
953 |
outputs = self.decoder(
|
954 |
input_ids=input_ids,
|
955 |
+
position_ids=position_ids,
|
956 |
attention_mask=attention_mask,
|
957 |
inputs_embeds=inputs_embeds,
|
958 |
past_key_values=past_key_values,
|