a2c-AntBulletEnv-v0 / config.json
jcnecio's picture
Initial commit
a7d2c4c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe2987089d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe298708a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe298708af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe298708b80>", "_build": "<function ActorCriticPolicy._build at 0x7fe298708c10>", "forward": "<function ActorCriticPolicy.forward at 0x7fe298708ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe298708d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe298708dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe298708e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe298708ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe298708f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe298709000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe298702240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686972619970520809, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABBdBECQ/ek+01H6PuEvmz9SzB5Ax9sPQDwO6z+ebMO/c9l+v5XYiz4dP3W+fb3fPxSoAUBck/++eR62PuFPRsCy9Ik/2kInv/saHD+vwI0/k6L2vmjDiT8zr6c/dAkPwKfrkr9l5O2/e28JPwCaYD8M+kQ/CfcUv9QY3T49AsA/PR2Avn1wvD9s5nu+2pmNvmw8ET0bDtY/8GFYv8gMFz61X62+0oocQJW3gL5aYzE+ix5gv3dmG0DRsTq+2ilbvoGJLr9rjJI+cl1kPy0m0j6n65K/Or4JP7Js7r8AmmA/QDuCP9Ba87/0UaG/+4B0P6F9BUAul58/IvKZPzPkR7/YQom/NUUzviW+Ub/q2o+7/fGXPww42T92JQa/c8GyP+yBsD+bSUu9DE7aPiAj1j+CP/E/e0aAv9WQkT+4Zto+p+uSvzq+CT97bwk/AJpgP2DMlD9eZK49sgEPP2Q0FD8c3hc/LU5YPkW3AD+UOwW/peXHvoLPXr9ZRpg/B7wkwLBUlj7CDZY/h69Rv3BNJj+RGQC+DJ/iP4UP1D0LzZi/PmEdvzhLAj/ojEM/VNONPqfrkr86vgk/e28JPwCaYD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAluye2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAU4EAPgAAAAClIfm/AAAAALvrBz4AAAAAhdP6PwAAAAC8SJ48AAAAADdQ3j8AAAAAcYoNPgAAAAAA/t2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKmVvNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCUdkDwAAAAAszfivwAAAAAdP1w7AAAAAJCU+j8AAAAA7/OmPQAAAACYoQBAAAAAADjku70AAAAAybLuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDthrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDoUKO8AAAAAGVS/b8AAAAA9z8XvQAAAABl4OU/AAAAAKOpm70AAAAAUy3qPwAAAAABbJw9AAAAAJ2n/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCWU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAgxNAvQAAAABZP/O/AAAAAHbJnb0AAAAAAND8PwAAAAA+1Pg9AAAAAPmm4j8AAAAAoGtzvQAAAAAppfy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJW1XjBEa2qMAWyUTegDjAF0lEdAreix0fYBeXV9lChoBkdAl3opYs/Y8WgHTegDaAhHQK3xV2eQMhJ1fZQoaAZHQIYbRLTQVsVoB03oA2gIR0Ct9bc/2TPjdX2UKGgGR0CULrXXyy2QaAdN6ANoCEdArfihvo/zKHV9lChoBkdAlJG/gm7aqWgHTegDaAhHQK349iYLLIR1fZQoaAZHQJPgQn6VMVVoB03oA2gIR0Ct/w/MGHHndX2UKGgGR0CYZep6hQFcaAdN6ANoCEdArgN8yrPt2XV9lChoBkdAkDBR5gPVeGgHTegDaAhHQK4HrgeA/cF1fZQoaAZHQIxvIJ1JUYNoB03oA2gIR0CuCC0AtFrmdX2UKGgGR0CE3e690zTGaAdN6ANoCEdArhDWDL8rJHV9lChoBkdAjJzn6dlNDmgHTegDaAhHQK4VPJ7LMcJ1fZQoaAZHQJCQu0Xxe9loB03oA2gIR0CuGCfO+qR2dX2UKGgGR0CNPDrzGxUvaAdN6ANoCEdArhh98zAN5XV9lChoBkdAkjiRVENOM2gHTegDaAhHQK4eutPHktF1fZQoaAZHQJH2/b48EFJoB03oA2gIR0CuIyE1uR9xdX2UKGgGR0CJEyIqLCN0aAdN6ANoCEdAridUMb3oLXV9lChoBkdAk0snF98Z1mgHTegDaAhHQK4nzKT0QK91fZQoaAZHQJLuIumJm/ZoB03oA2gIR0CuMK/bblBAdX2UKGgGR0CRRA4mkWRBaAdN6ANoCEdArjUCjWTX8XV9lChoBkdAlGORFiKBNGgHTegDaAhHQK4382kzoEB1fZQoaAZHQJK/Xgiu+ytoB03oA2gIR0CuOEWJzkp7dX2UKGgGR0CUSy2wFC9iaAdN6ANoCEdArj6COFQEZHV9lChoBkdAdFe3LV4HHGgHTegDaAhHQK5C4IHC4z91fZQoaAZHQITOXN5dGAloB03oA2gIR0CuRv14gRsedX2UKGgGR0CXS4imVJL/aAdN6ANoCEdArkd2bTc7AHV9lChoBkdAk+3SQT238WgHTegDaAhHQK5QqNCJGfB1fZQoaAZHQIqfVzKcNH9oB03oA2gIR0CuVNTmfXf7dX2UKGgGR0BN+WPtD2J0aAdLcWgIR0CuVlq02LpBdX2UKGgGR0CZr7Dg62fDaAdN6ANoCEdArleiHVPN3XV9lChoBkdAl0lmlqJuVGgHTegDaAhHQK5X8ROk+HJ1fZQoaAZHQFqhsdkrf+FoB0uUaAhHQK5YSXzlLe11fZQoaAZHQJUmtHOKO1hoB03oA2gIR0CuXhI+GGmDdX2UKGgGR0CWVqiuMdcTaAdN6ANoCEdArmXtVJcxCnV9lChoBkdAj7CGnXNC7mgHTegDaAhHQK5mY/8l5W11fZQoaAZHQJIAf+sHSndoB03oA2gIR0CuZuMAFPi2dX2UKGgGR0CWj8FyaNMoaAdN6ANoCEdArm/Ki/O+qXV9lChoBkdAlIlw8GLUC2gHTegDaAhHQK52zbKRuCR1fZQoaAZHQIvi2yon8bdoB03oA2gIR0CudyUSqU/wdX2UKGgGR0CXeSLiuMdcaAdN6ANoCEdArnd9FH8TBnV9lChoBkdAitCP5HmRvGgHTegDaAhHQK59N96Tnq51fZQoaAZHQJRx+gqVhThoB03oA2gIR0CuhKPqC6H1dX2UKGgGR0CXGwuuRs/IaAdN6ANoCEdAroUhwEQoTnV9lChoBkdAldoPwRXfZWgHTegDaAhHQK6FpwMH8j11fZQoaAZHQJSn8PlMh5hoB03oA2gIR0CujzMMI/qxdX2UKGgGR0CXB+c4HX2/aAdN6ANoCEdArpr3xFy7w3V9lChoBkdAigBaXrt3OmgHTegDaAhHQK6bSl2NedF1fZQoaAZHQJTs5vddmg9oB03oA2gIR0Cum6A2hqTKdX2UKGgGR0CWDHVpKzzFaAdN6ANoCEdArqFgIMSbpnV9lChoBkdAkvqqMWGh3GgHTegDaAhHQK6pxk1dgOV1fZQoaAZHQJZJHlp48lpoB03oA2gIR0CuqkKx9oexdX2UKGgGR0CXqQknTiKjaAdN6ANoCEdArqrM+C9RJnV9lChoBkdAmx6aXSjQA2gHTegDaAhHQK6zOZWq95B1fZQoaAZHQJKil/QSi/RoB03oA2gIR0Cuui2l2vB8dX2UKGgGR0CS/wR9gF5faAdN6ANoCEdArrqGx0MgEHV9lChoBkdAlmB4eT3Zf2gHTegDaAhHQK665bD/EO11fZQoaAZHQJjamVeKKpFoB03oA2gIR0CuwH+SbH6udX2UKGgGR0CU6G2zv7WNaAdN6ANoCEdArsg7hNucc3V9lChoBkdAk1feuieum2gHTegDaAhHQK7IseT3Zf51fZQoaAZHQJhDjtiQT25oB03oA2gIR0CuyTYEnssydX2UKGgGR0CXDKfsu3+daAdN6ANoCEdArtIiwY+B6XV9lChoBkdAlmnytV7x/mgHTegDaAhHQK7ZWPyTY/V1fZQoaAZHQJEXnbrTpgVoB03oA2gIR0Cu2agLRa5gdX2UKGgGR0CS2hMW43FUaAdN6ANoCEdArtoB2ECeVnV9lChoBkdAmRPW1x82JmgHTegDaAhHQK7fnbcGkep1fZQoaAZHQJMZS2fChvloB03oA2gIR0Cu5s6C17Y1dX2UKGgGR0CSR+D15B1LaAdN6ANoCEdArudHhfjS5XV9lChoBkdAkW3DH0btJGgHTegDaAhHQK7nxwvxpcp1fZQoaAZHQJDISOEM9bJoB03oA2gIR0Cu8JKVII4VdX2UKGgGR0CDPJBRhttRaAdN6ANoCEdArvhOaOPvKHV9lChoBkdAkBAeyNXHR2gHTegDaAhHQK74n5TIeYF1fZQoaAZHQIfUjYdyT6loB03oA2gIR0Cu+P08mrsCdX2UKGgGR0CTWfSaVlf7aAdN6ANoCEdArv6ZHd43WHV9lChoBkdAl5UUdzXBg2gHTegDaAhHQK8FkVHnU2F1fZQoaAZHQJTYbdFfAsVoB03oA2gIR0CvBd6CcwxndX2UKGgGR0CP1ABikO7QaAdN6ANoCEdArwY1MRHww3V9lChoBkdAg9+xesxO+WgHTegDaAhHQK8OqIYWLxZ1fZQoaAZHQJWUx/vv0AdoB03oA2gIR0CvF2jNhVlxdX2UKGgGR0CU/PItlI3BaAdN6ANoCEdArxe2EytV73V9lChoBkdAlQ/wq/dqL2gHTegDaAhHQK8YFQLux8l1fZQoaAZHQJWsZdLQHA1oB03oA2gIR0CvHZwokRjCdX2UKGgGR0CRAEnOjZctaAdN6ANoCEdAryS1FOO803V9lChoBkdAk7EUeMhoumgHTegDaAhHQK8lCghbGFV1fZQoaAZHQJVJXQswtapoB03oA2gIR0CvJWIaLn9vdX2UKGgGR0CSzLeenQ6ZaAdN6ANoCEdAryzekP+XJHV9lChoBkdAleb4rnTy8WgHTegDaAhHQK82W6tDD0l1fZQoaAZHQJAkVShrWRRoB03oA2gIR0CvNrAQpWmxdX2UKGgGR0CWuR8wHqu9aAdN6ANoCEdArzcUUh3aBnV9lChoBkdAkVSS3XqZ+mgHTegDaAhHQK88sokRjBl1fZQoaAZHQJoRIjTrmhdoB03oA2gIR0CvQ8BVENONdX2UKGgGR0CUKSFKkEcLaAdN6ANoCEdAr0QQ8IRh+nV9lChoBkdAlsjwgs9SuWgHTegDaAhHQK9EaN0eU6h1fZQoaAZHQI4p1TP0I1NoB03oA2gIR0CvS2Q/PgNxdX2UKGgGR0CSvjEJ0GNaaAdN6ANoCEdAr1VZjOLR8nV9lChoBkdAmJ7uhXbM5mgHTegDaAhHQK9Vp8Lront1fZQoaAZHQJaWcZGax5doB03oA2gIR0CvVgRxDLKWdX2UKGgGR0CIG1N0NjLCaAdN6ANoCEdAr1u/nB+F13V9lChoBkdAh3wuCGvfTGgHTegDaAhHQK9ixL/0dzZ1fZQoaAZHQJZq8mICU5doB03oA2gIR0CvYxOpKjBVdX2UKGgGR0CQZ12Dg62faAdN6ANoCEdAr2Nq3kPtlnV9lChoBkdAmLmKXKKYRmgHTegDaAhHQK9preFcpsp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}