a2c-PandaReachDense-v2 / config.json
jcnecio's picture
Initial commit
8e447a4
raw
history blame
15.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe298709120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe298702380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686983676033507289, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAo2vGPtmF/7whjR8/o2vGPtmF/7whjR8/o2vGPtmF/7whjR8/o2vGPtmF/7whjR8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApdmgP+bbRz8Nm6S/ndKgvXANoT8P/9k/YJkEP/ixqL8aR6A/psJcv35wxD9Vb1a/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38753995 -0.03119175 0.6232472 ]\n [ 0.38753995 -0.03119175 0.6232472 ]\n [ 0.38753995 -0.03119175 0.6232472 ]\n [ 0.38753995 -0.03119175 0.6232472 ]]", "desired_goal": "[[ 1.256642 0.78069913 -1.2859818 ]\n [-0.07852671 1.2582226 1.7030963 ]\n [ 0.5179653 -1.3179312 1.2521698 ]\n [-0.8623451 1.534683 -0.8376363 ]]", "observation": "[[ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]\n [ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]\n [ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]\n [ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAzTavbkyYDuGYBY+jZHIPV7ICjyd3kM+b98hPUpOFzxuQ8E9eQ63PY7vSz1Idik9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10654452 0.00342099 0.14685258]\n [ 0.09793387 0.00847062 0.19127889]\n [ 0.03951972 0.00923497 0.09436689]\n [ 0.08938307 0.049789 0.04137257]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC7PQzmkWAMCUhpRSlIwBbJRLMowBdJRHQKezzKfWcz91fZQoaAZoCWgPQwhs66f/rPn/v5SGlFKUaBVLMmgWR0Cns5H/95yEdX2UKGgGaAloD0MI4NbdPNVBAcCUhpRSlGgVSzJoFkdAp7NX8yeqaXV9lChoBmgJaA9DCIqw4emV0gPAlIaUUpRoFUsyaBZHQKezGNKAavR1fZQoaAZoCWgPQwiUUPpCyLn4v5SGlFKUaBVLMmgWR0CntXeso2GZdX2UKGgGaAloD0MIYye8BKfeA8CUhpRSlGgVSzJoFkdAp7U8xREWqXV9lChoBmgJaA9DCMrcfCO6p/S/lIaUUpRoFUsyaBZHQKe1Aq6OHWV1fZQoaAZoCWgPQwjHuU24V+YIwJSGlFKUaBVLMmgWR0CntMOYQarFdX2UKGgGaAloD0MIhGbXvRVJBcCUhpRSlGgVSzJoFkdAp7bNCHARCnV9lChoBmgJaA9DCIyfxr35jQTAlIaUUpRoFUsyaBZHQKe2kVZ9uxd1fZQoaAZoCWgPQwgPJsXHJ0QCwJSGlFKUaBVLMmgWR0CntlaJQ+EAdX2UKGgGaAloD0MIYYkHlE0ZDsCUhpRSlGgVSzJoFkdAp7YXBWPtD3V9lChoBmgJaA9DCE2BzM6iVwrAlIaUUpRoFUsyaBZHQKe32KArhBJ1fZQoaAZoCWgPQwibWrbWFykCwJSGlFKUaBVLMmgWR0Cnt5zgl4TsdX2UKGgGaAloD0MIIEWduYfkBcCUhpRSlGgVSzJoFkdAp7diKk2xZHV9lChoBmgJaA9DCEX11sBWyQLAlIaUUpRoFUsyaBZHQKe3Iood+5R1fZQoaAZoCWgPQwgY7fFCOgwRwJSGlFKUaBVLMmgWR0CnuN5zYEntdX2UKGgGaAloD0MIRSkhWFXPCMCUhpRSlGgVSzJoFkdAp7iikwevIXV9lChoBmgJaA9DCCDRBIpYJADAlIaUUpRoFUsyaBZHQKe4Z9WIXTF1fZQoaAZoCWgPQwjEQNe+gB4CwJSGlFKUaBVLMmgWR0CnuCf5LytndX2UKGgGaAloD0MI0gFJ2LfT/r+UhpRSlGgVSzJoFkdAp7n48Md92HV9lChoBmgJaA9DCEdxjjo6bgfAlIaUUpRoFUsyaBZHQKe5vVpblil1fZQoaAZoCWgPQwhZar3faAcDwJSGlFKUaBVLMmgWR0CnuYJ/G2kSdX2UKGgGaAloD0MITRHg9C4+AMCUhpRSlGgVSzJoFkdAp7lCwhW5pnV9lChoBmgJaA9DCETecvVjk/m/lIaUUpRoFUsyaBZHQKe68dU83dd1fZQoaAZoCWgPQwgSwM3ixYICwJSGlFKUaBVLMmgWR0CnurZQP7N0dX2UKGgGaAloD0MIDw9h/DReEMCUhpRSlGgVSzJoFkdAp7p7ronrp3V9lChoBmgJaA9DCJQRF4BGSQHAlIaUUpRoFUsyaBZHQKe6O+W4Vh11fZQoaAZoCWgPQwikwW1t4VkAwJSGlFKUaBVLMmgWR0Cnu/hnjABUdX2UKGgGaAloD0MIb/JbdLL0CsCUhpRSlGgVSzJoFkdAp7u8q6OHWXV9lChoBmgJaA9DCDBMpgpGZfW/lIaUUpRoFUsyaBZHQKe7gctoSL91fZQoaAZoCWgPQwjlKavpesIKwJSGlFKUaBVLMmgWR0Cnu0H/1g6VdX2UKGgGaAloD0MIdJfEWRG1BcCUhpRSlGgVSzJoFkdAp7z4U+LWJHV9lChoBmgJaA9DCAAC1qpdkwjAlIaUUpRoFUsyaBZHQKe8vMIu5Bl1fZQoaAZoCWgPQwjXFMjsLNoEwJSGlFKUaBVLMmgWR0CnvIIZqEeydX2UKGgGaAloD0MIwR9+/ntwB8CUhpRSlGgVSzJoFkdAp7xCWu5jIHV9lChoBmgJaA9DCINMMnIWtg/AlIaUUpRoFUsyaBZHQKe9/ER8MNN1fZQoaAZoCWgPQwj76qpALQYIwJSGlFKUaBVLMmgWR0CnvcCBXjlxdX2UKGgGaAloD0MIIXTQJRz6AsCUhpRSlGgVSzJoFkdAp72F1fVqe3V9lChoBmgJaA9DCA8J3/sb9ADAlIaUUpRoFUsyaBZHQKe9Rgb6xgR1fZQoaAZoCWgPQwirJoi6D2ALwJSGlFKUaBVLMmgWR0CnvvHVoYeldX2UKGgGaAloD0MITOKsiJqoCsCUhpRSlGgVSzJoFkdAp761/SYw7HV9lChoBmgJaA9DCJeQD3o2qwbAlIaUUpRoFUsyaBZHQKe+e2XLNfR1fZQoaAZoCWgPQwhN+KV+3nQJwJSGlFKUaBVLMmgWR0CnvjvIXCTEdX2UKGgGaAloD0MILNSa5h0nAMCUhpRSlGgVSzJoFkdAp7/uH+Idl3V9lChoBmgJaA9DCEvoLomzIvm/lIaUUpRoFUsyaBZHQKe/smdiDul1fZQoaAZoCWgPQwhOmgZF80ACwJSGlFKUaBVLMmgWR0Cnv3d7F85TdX2UKGgGaAloD0MIVG6iluYmEMCUhpRSlGgVSzJoFkdAp783jKgZj3V9lChoBmgJaA9DCOTziqceKfq/lIaUUpRoFUsyaBZHQKfA37+DOC51fZQoaAZoCWgPQwiVYkfjUH/9v5SGlFKUaBVLMmgWR0CnwKPmozeodX2UKGgGaAloD0MIp1mg3SHlA8CUhpRSlGgVSzJoFkdAp8BpP420iXV9lChoBmgJaA9DCDiie9Y1mgDAlIaUUpRoFUsyaBZHQKfAKYlY2bZ1fZQoaAZoCWgPQwgnwLD8+RYKwJSGlFKUaBVLMmgWR0Cnwd+dCmdidX2UKGgGaAloD0MI1IBB0qfVCsCUhpRSlGgVSzJoFkdAp8Gj987ZF3V9lChoBmgJaA9DCKCJsOHpVfi/lIaUUpRoFUsyaBZHQKfBaSeyzHF1fZQoaAZoCWgPQwgRxk/j3jwLwJSGlFKUaBVLMmgWR0CnwSl2mpEQdX2UKGgGaAloD0MIQWSRJt6B+r+UhpRSlGgVSzJoFkdAp8LeBH09Q3V9lChoBmgJaA9DCHpQUIpWDgjAlIaUUpRoFUsyaBZHQKfCoiiZfD11fZQoaAZoCWgPQwjzABb59SMKwJSGlFKUaBVLMmgWR0CnwmeJ53TvdX2UKGgGaAloD0MID0WBPpFHBMCUhpRSlGgVSzJoFkdAp8IntBv733V9lChoBmgJaA9DCO2fpwGDpAHAlIaUUpRoFUsyaBZHQKfD2FzMibF1fZQoaAZoCWgPQwg6H54lyAj+v5SGlFKUaBVLMmgWR0Cnw5yflIVedX2UKGgGaAloD0MI9u0kIvzrBsCUhpRSlGgVSzJoFkdAp8NhzYEns3V9lChoBmgJaA9DCMReKGA7GAvAlIaUUpRoFUsyaBZHQKfDIdpZfUp1fZQoaAZoCWgPQwiYTBWMSsoBwJSGlFKUaBVLMmgWR0CnxM4lIEr5dX2UKGgGaAloD0MI3q6Xpggw+L+UhpRSlGgVSzJoFkdAp8SSZpi7TXV9lChoBmgJaA9DCBO7trdbMgvAlIaUUpRoFUsyaBZHQKfEV5cC5mR1fZQoaAZoCWgPQwhjesISD1gQwJSGlFKUaBVLMmgWR0CnxBe8wpOOdX2UKGgGaAloD0MIFVYqqKh6BsCUhpRSlGgVSzJoFkdAp8XPmaH9FXV9lChoBmgJaA9DCN/6sN6o1QrAlIaUUpRoFUsyaBZHQKfFk7Dl5nl1fZQoaAZoCWgPQwjgTEwXYlUBwJSGlFKUaBVLMmgWR0CnxVkpAlfJdX2UKGgGaAloD0MI5E1+i062CcCUhpRSlGgVSzJoFkdAp8UZXlr/KnV9lChoBmgJaA9DCCNJEK6AQgLAlIaUUpRoFUsyaBZHQKfGvxAjY7J1fZQoaAZoCWgPQwhT51HxfycCwJSGlFKUaBVLMmgWR0CnxoNRNyo5dX2UKGgGaAloD0MI6INlbOgGAcCUhpRSlGgVSzJoFkdAp8ZIfKZDzHV9lChoBmgJaA9DCC81Qj9TDwzAlIaUUpRoFUsyaBZHQKfGCKc/dIp1fZQoaAZoCWgPQwjvcaYJ228DwJSGlFKUaBVLMmgWR0Cnx7b48EFGdX2UKGgGaAloD0MIjzhkA+mi/b+UhpRSlGgVSzJoFkdAp8d7gIhQnHV9lChoBmgJaA9DCBCTcCGPIPu/lIaUUpRoFUsyaBZHQKfHQN5MURF1fZQoaAZoCWgPQwhzY3rCEm8DwJSGlFKUaBVLMmgWR0CnxwGKQ7tBdX2UKGgGaAloD0MI6Phoccaw9r+UhpRSlGgVSzJoFkdAp8ioAhje9HV9lChoBmgJaA9DCM3mcRjMXwnAlIaUUpRoFUsyaBZHQKfIbBl+Vkd1fZQoaAZoCWgPQwgTu7a3W5IDwJSGlFKUaBVLMmgWR0CnyDFolD4QdX2UKGgGaAloD0MI3L3cJ0fhBcCUhpRSlGgVSzJoFkdAp8fxemelK3V9lChoBmgJaA9DCFlrKLUX0fa/lIaUUpRoFUsyaBZHQKfJnp3X7Lt1fZQoaAZoCWgPQwi9GqA01CgMwJSGlFKUaBVLMmgWR0CnyWK20AtGdX2UKGgGaAloD0MIwYu+gjTDCcCUhpRSlGgVSzJoFkdAp8kn+jua4XV9lChoBmgJaA9DCHbgnBGlffq/lIaUUpRoFUsyaBZHQKfI6B91EE11fZQoaAZoCWgPQwi3tvC8VOz/v5SGlFKUaBVLMmgWR0CnyqQWFev7dX2UKGgGaAloD0MIuTe/YaLB97+UhpRSlGgVSzJoFkdAp8ppje9BbHV9lChoBmgJaA9DCAK5xJEH4va/lIaUUpRoFUsyaBZHQKfKL4Uvf0p1fZQoaAZoCWgPQwh1WUxsPu79v5SGlFKUaBVLMmgWR0CnyfBHkLhKdX2UKGgGaAloD0MI9DRgkPRpDMCUhpRSlGgVSzJoFkdAp8w2PxQSBnV9lChoBmgJaA9DCEZB8Pj2bvm/lIaUUpRoFUsyaBZHQKfL+vTPSlZ1fZQoaAZoCWgPQwjDgCVXsXj/v5SGlFKUaBVLMmgWR0Cny8CxFAmidX2UKGgGaAloD0MISN3OvvIABsCUhpRSlGgVSzJoFkdAp8uBha1Ti3V9lChoBmgJaA9DCFd3LLZJ5QDAlIaUUpRoFUsyaBZHQKfNzXdTHbR1fZQoaAZoCWgPQwgKTKd1G5QLwJSGlFKUaBVLMmgWR0CnzZLc9GI9dX2UKGgGaAloD0MIJCU9DK3OBsCUhpRSlGgVSzJoFkdAp81ZYs/Y8XV9lChoBmgJaA9DCEcFTraBu/+/lIaUUpRoFUsyaBZHQKfNGgvlEJB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}