jcnecio commited on
Commit
fb97051
1 Parent(s): da3e031

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -2.25 +/- 0.54
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaReachDense-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -4.32 +/- 1.08
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-PandaReachDense-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d399f31e783ccdfe36c21256c13b7f2ce532e1501d04b8e48c4866b9ce70a8fc
3
- size 108159
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:639ae2422f29c162e8bc723c2c37b14fce9ce15854bc095bd69f17bf0e118523
3
+ size 108075
a2c-PandaReachDense-v2/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe298709120>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fe298702380>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -24,7 +24,7 @@
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
- "start_time": 1686983676033507289,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
@@ -33,10 +33,10 @@
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAo2vGPtmF/7whjR8/o2vGPtmF/7whjR8/o2vGPtmF/7whjR8/o2vGPtmF/7whjR8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApdmgP+bbRz8Nm6S/ndKgvXANoT8P/9k/YJkEP/ixqL8aR6A/psJcv35wxD9Vb1a/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
- "achieved_goal": "[[ 0.38753995 -0.03119175 0.6232472 ]\n [ 0.38753995 -0.03119175 0.6232472 ]\n [ 0.38753995 -0.03119175 0.6232472 ]\n [ 0.38753995 -0.03119175 0.6232472 ]]",
38
- "desired_goal": "[[ 1.256642 0.78069913 -1.2859818 ]\n [-0.07852671 1.2582226 1.7030963 ]\n [ 0.5179653 -1.3179312 1.2521698 ]\n [-0.8623451 1.534683 -0.8376363 ]]",
39
- "observation": "[[ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]\n [ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]\n [ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]\n [ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
@@ -44,9 +44,9 @@
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
- ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAzTavbkyYDuGYBY+jZHIPV7ICjyd3kM+b98hPUpOFzxuQ8E9eQ63PY7vSz1Idik9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
- "desired_goal": "[[-0.10654452 0.00342099 0.14685258]\n [ 0.09793387 0.00847062 0.19127889]\n [ 0.03951972 0.00923497 0.09436689]\n [ 0.08938307 0.049789 0.04137257]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
@@ -56,7 +56,7 @@
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC7PQzmkWAMCUhpRSlIwBbJRLMowBdJRHQKezzKfWcz91fZQoaAZoCWgPQwhs66f/rPn/v5SGlFKUaBVLMmgWR0Cns5H/95yEdX2UKGgGaAloD0MI4NbdPNVBAcCUhpRSlGgVSzJoFkdAp7NX8yeqaXV9lChoBmgJaA9DCIqw4emV0gPAlIaUUpRoFUsyaBZHQKezGNKAavR1fZQoaAZoCWgPQwiUUPpCyLn4v5SGlFKUaBVLMmgWR0CntXeso2GZdX2UKGgGaAloD0MIYye8BKfeA8CUhpRSlGgVSzJoFkdAp7U8xREWqXV9lChoBmgJaA9DCMrcfCO6p/S/lIaUUpRoFUsyaBZHQKe1Aq6OHWV1fZQoaAZoCWgPQwjHuU24V+YIwJSGlFKUaBVLMmgWR0CntMOYQarFdX2UKGgGaAloD0MIhGbXvRVJBcCUhpRSlGgVSzJoFkdAp7bNCHARCnV9lChoBmgJaA9DCIyfxr35jQTAlIaUUpRoFUsyaBZHQKe2kVZ9uxd1fZQoaAZoCWgPQwgPJsXHJ0QCwJSGlFKUaBVLMmgWR0CntlaJQ+EAdX2UKGgGaAloD0MIYYkHlE0ZDsCUhpRSlGgVSzJoFkdAp7YXBWPtD3V9lChoBmgJaA9DCE2BzM6iVwrAlIaUUpRoFUsyaBZHQKe32KArhBJ1fZQoaAZoCWgPQwibWrbWFykCwJSGlFKUaBVLMmgWR0Cnt5zgl4TsdX2UKGgGaAloD0MIIEWduYfkBcCUhpRSlGgVSzJoFkdAp7diKk2xZHV9lChoBmgJaA9DCEX11sBWyQLAlIaUUpRoFUsyaBZHQKe3Iood+5R1fZQoaAZoCWgPQwgY7fFCOgwRwJSGlFKUaBVLMmgWR0CnuN5zYEntdX2UKGgGaAloD0MIRSkhWFXPCMCUhpRSlGgVSzJoFkdAp7iikwevIXV9lChoBmgJaA9DCCDRBIpYJADAlIaUUpRoFUsyaBZHQKe4Z9WIXTF1fZQoaAZoCWgPQwjEQNe+gB4CwJSGlFKUaBVLMmgWR0CnuCf5LytndX2UKGgGaAloD0MI0gFJ2LfT/r+UhpRSlGgVSzJoFkdAp7n48Md92HV9lChoBmgJaA9DCEdxjjo6bgfAlIaUUpRoFUsyaBZHQKe5vVpblil1fZQoaAZoCWgPQwhZar3faAcDwJSGlFKUaBVLMmgWR0CnuYJ/G2kSdX2UKGgGaAloD0MITRHg9C4+AMCUhpRSlGgVSzJoFkdAp7lCwhW5pnV9lChoBmgJaA9DCETecvVjk/m/lIaUUpRoFUsyaBZHQKe68dU83dd1fZQoaAZoCWgPQwgSwM3ixYICwJSGlFKUaBVLMmgWR0CnurZQP7N0dX2UKGgGaAloD0MIDw9h/DReEMCUhpRSlGgVSzJoFkdAp7p7ronrp3V9lChoBmgJaA9DCJQRF4BGSQHAlIaUUpRoFUsyaBZHQKe6O+W4Vh11fZQoaAZoCWgPQwikwW1t4VkAwJSGlFKUaBVLMmgWR0Cnu/hnjABUdX2UKGgGaAloD0MIb/JbdLL0CsCUhpRSlGgVSzJoFkdAp7u8q6OHWXV9lChoBmgJaA9DCDBMpgpGZfW/lIaUUpRoFUsyaBZHQKe7gctoSL91fZQoaAZoCWgPQwjlKavpesIKwJSGlFKUaBVLMmgWR0Cnu0H/1g6VdX2UKGgGaAloD0MIdJfEWRG1BcCUhpRSlGgVSzJoFkdAp7z4U+LWJHV9lChoBmgJaA9DCAAC1qpdkwjAlIaUUpRoFUsyaBZHQKe8vMIu5Bl1fZQoaAZoCWgPQwjXFMjsLNoEwJSGlFKUaBVLMmgWR0CnvIIZqEeydX2UKGgGaAloD0MIwR9+/ntwB8CUhpRSlGgVSzJoFkdAp7xCWu5jIHV9lChoBmgJaA9DCINMMnIWtg/AlIaUUpRoFUsyaBZHQKe9/ER8MNN1fZQoaAZoCWgPQwj76qpALQYIwJSGlFKUaBVLMmgWR0CnvcCBXjlxdX2UKGgGaAloD0MIIXTQJRz6AsCUhpRSlGgVSzJoFkdAp72F1fVqe3V9lChoBmgJaA9DCA8J3/sb9ADAlIaUUpRoFUsyaBZHQKe9Rgb6xgR1fZQoaAZoCWgPQwirJoi6D2ALwJSGlFKUaBVLMmgWR0CnvvHVoYeldX2UKGgGaAloD0MITOKsiJqoCsCUhpRSlGgVSzJoFkdAp761/SYw7HV9lChoBmgJaA9DCJeQD3o2qwbAlIaUUpRoFUsyaBZHQKe+e2XLNfR1fZQoaAZoCWgPQwhN+KV+3nQJwJSGlFKUaBVLMmgWR0CnvjvIXCTEdX2UKGgGaAloD0MILNSa5h0nAMCUhpRSlGgVSzJoFkdAp7/uH+Idl3V9lChoBmgJaA9DCEvoLomzIvm/lIaUUpRoFUsyaBZHQKe/smdiDul1fZQoaAZoCWgPQwhOmgZF80ACwJSGlFKUaBVLMmgWR0Cnv3d7F85TdX2UKGgGaAloD0MIVG6iluYmEMCUhpRSlGgVSzJoFkdAp783jKgZj3V9lChoBmgJaA9DCOTziqceKfq/lIaUUpRoFUsyaBZHQKfA37+DOC51fZQoaAZoCWgPQwiVYkfjUH/9v5SGlFKUaBVLMmgWR0CnwKPmozeodX2UKGgGaAloD0MIp1mg3SHlA8CUhpRSlGgVSzJoFkdAp8BpP420iXV9lChoBmgJaA9DCDiie9Y1mgDAlIaUUpRoFUsyaBZHQKfAKYlY2bZ1fZQoaAZoCWgPQwgnwLD8+RYKwJSGlFKUaBVLMmgWR0Cnwd+dCmdidX2UKGgGaAloD0MI1IBB0qfVCsCUhpRSlGgVSzJoFkdAp8Gj987ZF3V9lChoBmgJaA9DCKCJsOHpVfi/lIaUUpRoFUsyaBZHQKfBaSeyzHF1fZQoaAZoCWgPQwgRxk/j3jwLwJSGlFKUaBVLMmgWR0CnwSl2mpEQdX2UKGgGaAloD0MIQWSRJt6B+r+UhpRSlGgVSzJoFkdAp8LeBH09Q3V9lChoBmgJaA9DCHpQUIpWDgjAlIaUUpRoFUsyaBZHQKfCoiiZfD11fZQoaAZoCWgPQwjzABb59SMKwJSGlFKUaBVLMmgWR0CnwmeJ53TvdX2UKGgGaAloD0MID0WBPpFHBMCUhpRSlGgVSzJoFkdAp8IntBv733V9lChoBmgJaA9DCO2fpwGDpAHAlIaUUpRoFUsyaBZHQKfD2FzMibF1fZQoaAZoCWgPQwg6H54lyAj+v5SGlFKUaBVLMmgWR0Cnw5yflIVedX2UKGgGaAloD0MI9u0kIvzrBsCUhpRSlGgVSzJoFkdAp8NhzYEns3V9lChoBmgJaA9DCMReKGA7GAvAlIaUUpRoFUsyaBZHQKfDIdpZfUp1fZQoaAZoCWgPQwiYTBWMSsoBwJSGlFKUaBVLMmgWR0CnxM4lIEr5dX2UKGgGaAloD0MI3q6Xpggw+L+UhpRSlGgVSzJoFkdAp8SSZpi7TXV9lChoBmgJaA9DCBO7trdbMgvAlIaUUpRoFUsyaBZHQKfEV5cC5mR1fZQoaAZoCWgPQwhjesISD1gQwJSGlFKUaBVLMmgWR0CnxBe8wpOOdX2UKGgGaAloD0MIFVYqqKh6BsCUhpRSlGgVSzJoFkdAp8XPmaH9FXV9lChoBmgJaA9DCN/6sN6o1QrAlIaUUpRoFUsyaBZHQKfFk7Dl5nl1fZQoaAZoCWgPQwjgTEwXYlUBwJSGlFKUaBVLMmgWR0CnxVkpAlfJdX2UKGgGaAloD0MI5E1+i062CcCUhpRSlGgVSzJoFkdAp8UZXlr/KnV9lChoBmgJaA9DCCNJEK6AQgLAlIaUUpRoFUsyaBZHQKfGvxAjY7J1fZQoaAZoCWgPQwhT51HxfycCwJSGlFKUaBVLMmgWR0CnxoNRNyo5dX2UKGgGaAloD0MI6INlbOgGAcCUhpRSlGgVSzJoFkdAp8ZIfKZDzHV9lChoBmgJaA9DCC81Qj9TDwzAlIaUUpRoFUsyaBZHQKfGCKc/dIp1fZQoaAZoCWgPQwjvcaYJ228DwJSGlFKUaBVLMmgWR0Cnx7b48EFGdX2UKGgGaAloD0MIjzhkA+mi/b+UhpRSlGgVSzJoFkdAp8d7gIhQnHV9lChoBmgJaA9DCBCTcCGPIPu/lIaUUpRoFUsyaBZHQKfHQN5MURF1fZQoaAZoCWgPQwhzY3rCEm8DwJSGlFKUaBVLMmgWR0CnxwGKQ7tBdX2UKGgGaAloD0MI6Phoccaw9r+UhpRSlGgVSzJoFkdAp8ioAhje9HV9lChoBmgJaA9DCM3mcRjMXwnAlIaUUpRoFUsyaBZHQKfIbBl+Vkd1fZQoaAZoCWgPQwgTu7a3W5IDwJSGlFKUaBVLMmgWR0CnyDFolD4QdX2UKGgGaAloD0MI3L3cJ0fhBcCUhpRSlGgVSzJoFkdAp8fxemelK3V9lChoBmgJaA9DCFlrKLUX0fa/lIaUUpRoFUsyaBZHQKfJnp3X7Lt1fZQoaAZoCWgPQwi9GqA01CgMwJSGlFKUaBVLMmgWR0CnyWK20AtGdX2UKGgGaAloD0MIwYu+gjTDCcCUhpRSlGgVSzJoFkdAp8kn+jua4XV9lChoBmgJaA9DCHbgnBGlffq/lIaUUpRoFUsyaBZHQKfI6B91EE11fZQoaAZoCWgPQwi3tvC8VOz/v5SGlFKUaBVLMmgWR0CnyqQWFev7dX2UKGgGaAloD0MIuTe/YaLB97+UhpRSlGgVSzJoFkdAp8ppje9BbHV9lChoBmgJaA9DCAK5xJEH4va/lIaUUpRoFUsyaBZHQKfKL4Uvf0p1fZQoaAZoCWgPQwh1WUxsPu79v5SGlFKUaBVLMmgWR0CnyfBHkLhKdX2UKGgGaAloD0MI9DRgkPRpDMCUhpRSlGgVSzJoFkdAp8w2PxQSBnV9lChoBmgJaA9DCEZB8Pj2bvm/lIaUUpRoFUsyaBZHQKfL+vTPSlZ1fZQoaAZoCWgPQwjDgCVXsXj/v5SGlFKUaBVLMmgWR0Cny8CxFAmidX2UKGgGaAloD0MISN3OvvIABsCUhpRSlGgVSzJoFkdAp8uBha1Ti3V9lChoBmgJaA9DCFd3LLZJ5QDAlIaUUpRoFUsyaBZHQKfNzXdTHbR1fZQoaAZoCWgPQwgKTKd1G5QLwJSGlFKUaBVLMmgWR0CnzZLc9GI9dX2UKGgGaAloD0MIJCU9DK3OBsCUhpRSlGgVSzJoFkdAp81ZYs/Y8XV9lChoBmgJaA9DCEcFTraBu/+/lIaUUpRoFUsyaBZHQKfNGgvlEJB1ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc523ce40d0>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fc523ecae80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
24
  "_num_timesteps_at_start": 0,
25
  "seed": null,
26
  "action_noise": null,
27
+ "start_time": 1686988741668100144,
28
  "learning_rate": 0.0007,
29
  "tensorboard_log": null,
30
  "lr_schedule": {
 
33
  },
34
  "_last_obs": {
35
  ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAk8UKv6eyKr/6X8I+PxuxvS0Uiz/PLPy9o4LsPkbZq7/U7Ly/+hqWv4A9PD8oepS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDyUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[ 0.38065195 -0.03189621 0.43825924]\n [ 0.38065195 -0.03189621 0.43825924]\n [ 0.38065195 -0.03189621 0.43825924]\n [ 0.38065195 -0.03189621 0.43825924]]",
38
+ "desired_goal": "[[-0.54207724 -0.6667885 0.3796385 ]\n [-0.08647775 1.0865532 -0.12313234]\n [ 0.46193418 -1.3425682 -1.4759774 ]\n [-1.1726983 0.7353134 -0.28999448]]",
39
+ "observation": "[[ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]\n [ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]\n [ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]\n [ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]]"
40
  },
41
  "_last_episode_starts": {
42
  ":type:": "<class 'numpy.ndarray'>",
 
44
  },
45
  "_last_original_obs": {
46
  ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI0K2PRp3oL06Drw94aUvPeOlVL1ikHw+4BRMvQpqJzwAqXE93hcSPrF9DT0AI0g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
  "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.08899333 -0.07835217 0.09182401]\n [ 0.0428828 -0.05191601 0.24664453]\n [-0.0498246 0.01021815 0.05899906]\n [ 0.14266917 0.0345437 0.19544601]]",
50
  "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
  },
52
  "_episode_num": 0,
 
56
  "_stats_window_size": 100,
57
  "ep_info_buffer": {
58
  ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaxFRTN7QEMCUhpRSlIwBbJRLMowBdJRHQKleVzySV4Z1fZQoaAZoCWgPQwgEyTuHMkQTwJSGlFKUaBVLMmgWR0CpXg4ecQRPdX2UKGgGaAloD0MIMBAEyNCxC8CUhpRSlGgVSzJoFkdAqV3RcPe54HV9lChoBmgJaA9DCIaOHVTi+hHAlIaUUpRoFUsyaBZHQKldkoy9EkV1fZQoaAZoCWgPQwjon+BiRY0HwJSGlFKUaBVLMmgWR0CpYDqioKlYdX2UKGgGaAloD0MItYmT+x1qB8CUhpRSlGgVSzJoFkdAqV/yn+AEuHV9lChoBmgJaA9DCEpdMo6RjAjAlIaUUpRoFUsyaBZHQKlftnscABF1fZQoaAZoCWgPQwglea7vwwH9v5SGlFKUaBVLMmgWR0CpX3f5DZ13dX2UKGgGaAloD0MIn+i68INDG8CUhpRSlGgVSzJoFkdAqWH/dyksSXV9lChoBmgJaA9DCN5UpMLYggLAlIaUUpRoFUsyaBZHQKlhtPRArx11fZQoaAZoCWgPQwizeRwG89cTwJSGlFKUaBVLMmgWR0CpYXeGfwqidX2UKGgGaAloD0MIRDUlWYdzE8CUhpRSlGgVSzJoFkdAqWE4H9m6G3V9lChoBmgJaA9DCJtWCoFcQgvAlIaUUpRoFUsyaBZHQKljBtVrAQB1fZQoaAZoCWgPQwiDpbqAlwkQwJSGlFKUaBVLMmgWR0CpYrz1kDp1dX2UKGgGaAloD0MIyaoINxnVGMCUhpRSlGgVSzJoFkdAqWJ/e7+T/3V9lChoBmgJaA9DCIU/w5s1WA3AlIaUUpRoFUsyaBZHQKliQB3A2yd1fZQoaAZoCWgPQwgJqdvZV94RwJSGlFKUaBVLMmgWR0CpZBYFzMibdX2UKGgGaAloD0MIY+/FF+1RDcCUhpRSlGgVSzJoFkdAqWPLsD4gzXV9lChoBmgJaA9DCE0UIXU7GwXAlIaUUpRoFUsyaBZHQKljjkzXSSh1fZQoaAZoCWgPQwhHrwYoDVUBwJSGlFKUaBVLMmgWR0CpY07lijL0dX2UKGgGaAloD0MIeEMaFTj5E8CUhpRSlGgVSzJoFkdAqWUiAjIJaHV9lChoBmgJaA9DCLEaS1gbAwzAlIaUUpRoFUsyaBZHQKlk19+gDih1fZQoaAZoCWgPQwgIW+z2WYUGwJSGlFKUaBVLMmgWR0CpZJpvo/zKdX2UKGgGaAloD0MIUMJM27+SEcCUhpRSlGgVSzJoFkdAqWRbDEWIoHV9lChoBmgJaA9DCOksswjFlvy/lIaUUpRoFUsyaBZHQKlmU90zTF51fZQoaAZoCWgPQwiV1AloIowLwJSGlFKUaBVLMmgWR0CpZgqBun/DdX2UKGgGaAloD0MIg2vu6H85GcCUhpRSlGgVSzJoFkdAqWXOJSBK+XV9lChoBmgJaA9DCKq7sgsG1xLAlIaUUpRoFUsyaBZHQKlljqW1MM91fZQoaAZoCWgPQwiZR/5g4BkPwJSGlFKUaBVLMmgWR0CpZ3EAo5PudX2UKGgGaAloD0MIVix+U1gpAsCUhpRSlGgVSzJoFkdAqWcnek56t3V9lChoBmgJaA9DCJAWZwxzchPAlIaUUpRoFUsyaBZHQKlm6w+t8u11fZQoaAZoCWgPQwgYIxKFlqUXwJSGlFKUaBVLMmgWR0CpZqxgAp8XdX2UKGgGaAloD0MIe9egL73dB8CUhpRSlGgVSzJoFkdAqWiC9K28ZnV9lChoBmgJaA9DCDnv/+OEyRDAlIaUUpRoFUsyaBZHQKloOJiRW911fZQoaAZoCWgPQwjMCdrk8HkUwJSGlFKUaBVLMmgWR0CpZ/tKIznBdX2UKGgGaAloD0MIqknwhjRqEcCUhpRSlGgVSzJoFkdAqWe8cfeUIXV9lChoBmgJaA9DCIf4hy09ehXAlIaUUpRoFUsyaBZHQKlpqmCROlB1fZQoaAZoCWgPQwj3Bl+YTJUDwJSGlFKUaBVLMmgWR0CpaV/SpiqidX2UKGgGaAloD0MIKxVUVP16E8CUhpRSlGgVSzJoFkdAqWkjCk43m3V9lChoBmgJaA9DCBUdyeU/pBjAlIaUUpRoFUsyaBZHQKlo44xUNrl1fZQoaAZoCWgPQwiZuiu7YJAWwJSGlFKUaBVLMmgWR0CparhDPWxydX2UKGgGaAloD0MIVz82yY/YGMCUhpRSlGgVSzJoFkdAqWpuDDjzZ3V9lChoBmgJaA9DCEVoBBvXHwbAlIaUUpRoFUsyaBZHQKlqMLofSx91fZQoaAZoCWgPQwi/uFSlLS73v5SGlFKUaBVLMmgWR0CpafGVAzHkdX2UKGgGaAloD0MI3EjZImnHGcCUhpRSlGgVSzJoFkdAqWvDmW+oL3V9lChoBmgJaA9DCACo4sYtlhnAlIaUUpRoFUsyaBZHQKlreTnq3Vl1fZQoaAZoCWgPQwhAwjBgyWUYwJSGlFKUaBVLMmgWR0CpazvES/TLdX2UKGgGaAloD0MILESHwJEgAcCUhpRSlGgVSzJoFkdAqWr8SXdCV3V9lChoBmgJaA9DCNmvO915UhPAlIaUUpRoFUsyaBZHQKls1UCJXQt1fZQoaAZoCWgPQwihZHJqZ2gTwJSGlFKUaBVLMmgWR0CpbIrvkRzzdX2UKGgGaAloD0MIDHTtC+ilCMCUhpRSlGgVSzJoFkdAqWxNmnO0LXV9lChoBmgJaA9DCLlt36P+egjAlIaUUpRoFUsyaBZHQKlsDiz9jwx1fZQoaAZoCWgPQwgyHqUSnkAQwJSGlFKUaBVLMmgWR0Cpbei1JDmbdX2UKGgGaAloD0MIUduGURA8+r+UhpRSlGgVSzJoFkdAqW2eZ5Rj0HV9lChoBmgJaA9DCFzK+WLvxQnAlIaUUpRoFUsyaBZHQKltYLNwBHV1fZQoaAZoCWgPQwg7wmnBi779v5SGlFKUaBVLMmgWR0CpbSGNR3vAdX2UKGgGaAloD0MIKVq5F5jlEMCUhpRSlGgVSzJoFkdAqW782DQJHHV9lChoBmgJaA9DCFga+FENWwzAlIaUUpRoFUsyaBZHQKlusqEOAiF1fZQoaAZoCWgPQwiasWg6O/kawJSGlFKUaBVLMmgWR0CpbnU1qFh5dX2UKGgGaAloD0MIdVYL7DGxGMCUhpRSlGgVSzJoFkdAqW410cOsk3V9lChoBmgJaA9DCPmFV5I8lwPAlIaUUpRoFUsyaBZHQKlwJ7laKUF1fZQoaAZoCWgPQwjNdRppqdwUwJSGlFKUaBVLMmgWR0Cpb9181Gb1dX2UKGgGaAloD0MI7q8e9622EsCUhpRSlGgVSzJoFkdAqW+gHmig03V9lChoBmgJaA9DCEqaP6a1CQ3AlIaUUpRoFUsyaBZHQKlvYLNwBHV1fZQoaAZoCWgPQwgnoImw4en7v5SGlFKUaBVLMmgWR0CpcTf8uSOjdX2UKGgGaAloD0MIXcXiN4VVDMCUhpRSlGgVSzJoFkdAqXDtvddmhHV9lChoBmgJaA9DCGoYPiKmxA3AlIaUUpRoFUsyaBZHQKlwsEf1Yhd1fZQoaAZoCWgPQwjQKcjPRm4SwJSGlFKUaBVLMmgWR0CpcHCvxH5KdX2UKGgGaAloD0MIRDF5A8w8CcCUhpRSlGgVSzJoFkdAqXJRswco6XV9lChoBmgJaA9DCO2A64oZIQLAlIaUUpRoFUsyaBZHQKlyB47A+IN1fZQoaAZoCWgPQwi7D0BqE0cKwJSGlFKUaBVLMmgWR0CpccoV2zOYdX2UKGgGaAloD0MIE2ba/pX1FMCUhpRSlGgVSzJoFkdAqXGKpR4yGnV9lChoBmgJaA9DCCVATS1bKxHAlIaUUpRoFUsyaBZHQKlzeBdUsFt1fZQoaAZoCWgPQwj3x3vVyuQZwJSGlFKUaBVLMmgWR0Cpcy3Vsk6cdX2UKGgGaAloD0MIm49rQ8XIFMCUhpRSlGgVSzJoFkdAqXLwbIcR2HV9lChoBmgJaA9DCCDtf4C16gDAlIaUUpRoFUsyaBZHQKlysWBSUC91fZQoaAZoCWgPQwilgoqqX3kTwJSGlFKUaBVLMmgWR0CpdKSFGoaUdX2UKGgGaAloD0MI7NtJRPjXFMCUhpRSlGgVSzJoFkdAqXRaMDOkcnV9lChoBmgJaA9DCHxl3qrrsATAlIaUUpRoFUsyaBZHQKl0HN34bjt1fZQoaAZoCWgPQwjTFAFO74IOwJSGlFKUaBVLMmgWR0Cpc92zWwu/dX2UKGgGaAloD0MIec4WEFr/EMCUhpRSlGgVSzJoFkdAqXWzM5fdAXV9lChoBmgJaA9DCBuADYgQNwrAlIaUUpRoFUsyaBZHQKl1aOuJUHZ1fZQoaAZoCWgPQwj7rDJTWn8OwJSGlFKUaBVLMmgWR0CpdSs+eOGTdX2UKGgGaAloD0MIns4VpYQAC8CUhpRSlGgVSzJoFkdAqXTrwpe/pXV9lChoBmgJaA9DCB+fkJ23kQnAlIaUUpRoFUsyaBZHQKl3dKaG5+Z1fZQoaAZoCWgPQwirzJTW39L+v5SGlFKUaBVLMmgWR0Cpdys1baAXdX2UKGgGaAloD0MIcw6eCU0SA8CUhpRSlGgVSzJoFkdAqXbvxri2lXV9lChoBmgJaA9DCAXfNH124AzAlIaUUpRoFUsyaBZHQKl2sQarFOx1fZQoaAZoCWgPQwi7fyxEh6ALwJSGlFKUaBVLMmgWR0CpeUO6mO2idX2UKGgGaAloD0MIQBcNGY/SC8CUhpRSlGgVSzJoFkdAqXj6ZlWfb3V9lChoBmgJaA9DCJ0tILQeHgfAlIaUUpRoFUsyaBZHQKl4vh4t6HF1fZQoaAZoCWgPQwjvHwvRIYAUwJSGlFKUaBVLMmgWR0CpeH+HzpX7dX2UKGgGaAloD0MIQ1Thz/BmAcCUhpRSlGgVSzJoFkdAqXtRX0XgtXV9lChoBmgJaA9DCIOj5NU5hgDAlIaUUpRoFUsyaBZHQKl7CKNQ0oB1fZQoaAZoCWgPQwiGPe3w1wQEwJSGlFKUaBVLMmgWR0Cpesv8hs68dX2UKGgGaAloD0MI2nOZmgQPBsCUhpRSlGgVSzJoFkdAqXqO10DEFXV9lChoBmgJaA9DCCC0Hr5MNBPAlIaUUpRoFUsyaBZHQKl9UALApKB1fZQoaAZoCWgPQwgN/+kGCkwVwJSGlFKUaBVLMmgWR0CpfQZfdAPedX2UKGgGaAloD0MIjGSPUDO0EsCUhpRSlGgVSzJoFkdAqXzKHGjsU3V9lChoBmgJaA9DCANeZtgomxLAlIaUUpRoFUsyaBZHQKl8i2PT5O91ZS4="
60
  },
61
  "ep_success_buffer": {
62
  ":type:": "<class 'collections.deque'>",
a2c-PandaReachDense-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fc7559fb2c7b6ed002e90cb201c806017dea43a3f920cb1a3b158b872a3183c1
3
  size 44734
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2f2f293c747636adb6eeaf33effe11ab850bd24d303ce227012e35baa4d2b1d
3
  size 44734
a2c-PandaReachDense-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8fd981e5bac828359c8b1f2359f7cf001a2de5cf54d66bb6417360f7c0af3387
3
  size 46014
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65fd659f4f94ef509f9923ec8a94024beeee480dc6014c3327f986289828b2d2
3
  size 46014
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe298709120>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe298702380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686983676033507289, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAo2vGPtmF/7whjR8/o2vGPtmF/7whjR8/o2vGPtmF/7whjR8/o2vGPtmF/7whjR8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApdmgP+bbRz8Nm6S/ndKgvXANoT8P/9k/YJkEP/ixqL8aR6A/psJcv35wxD9Vb1a/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyja8Y+2YX/vCGNHz8cQbY7LOKnNhFycDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38753995 -0.03119175 0.6232472 ]\n [ 0.38753995 -0.03119175 0.6232472 ]\n [ 0.38753995 -0.03119175 0.6232472 ]\n [ 0.38753995 -0.03119175 0.6232472 ]]", "desired_goal": "[[ 1.256642 0.78069913 -1.2859818 ]\n [-0.07852671 1.2582226 1.7030963 ]\n [ 0.5179653 -1.3179312 1.2521698 ]\n [-0.8623451 1.534683 -0.8376363 ]]", "observation": "[[ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]\n [ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]\n [ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]\n [ 3.8753995e-01 -3.1191753e-02 6.2324721e-01 5.5619609e-03\n 5.0033177e-06 1.4675633e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAzTavbkyYDuGYBY+jZHIPV7ICjyd3kM+b98hPUpOFzxuQ8E9eQ63PY7vSz1Idik9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10654452 0.00342099 0.14685258]\n [ 0.09793387 0.00847062 0.19127889]\n [ 0.03951972 0.00923497 0.09436689]\n [ 0.08938307 0.049789 0.04137257]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIC7PQzmkWAMCUhpRSlIwBbJRLMowBdJRHQKezzKfWcz91fZQoaAZoCWgPQwhs66f/rPn/v5SGlFKUaBVLMmgWR0Cns5H/95yEdX2UKGgGaAloD0MI4NbdPNVBAcCUhpRSlGgVSzJoFkdAp7NX8yeqaXV9lChoBmgJaA9DCIqw4emV0gPAlIaUUpRoFUsyaBZHQKezGNKAavR1fZQoaAZoCWgPQwiUUPpCyLn4v5SGlFKUaBVLMmgWR0CntXeso2GZdX2UKGgGaAloD0MIYye8BKfeA8CUhpRSlGgVSzJoFkdAp7U8xREWqXV9lChoBmgJaA9DCMrcfCO6p/S/lIaUUpRoFUsyaBZHQKe1Aq6OHWV1fZQoaAZoCWgPQwjHuU24V+YIwJSGlFKUaBVLMmgWR0CntMOYQarFdX2UKGgGaAloD0MIhGbXvRVJBcCUhpRSlGgVSzJoFkdAp7bNCHARCnV9lChoBmgJaA9DCIyfxr35jQTAlIaUUpRoFUsyaBZHQKe2kVZ9uxd1fZQoaAZoCWgPQwgPJsXHJ0QCwJSGlFKUaBVLMmgWR0CntlaJQ+EAdX2UKGgGaAloD0MIYYkHlE0ZDsCUhpRSlGgVSzJoFkdAp7YXBWPtD3V9lChoBmgJaA9DCE2BzM6iVwrAlIaUUpRoFUsyaBZHQKe32KArhBJ1fZQoaAZoCWgPQwibWrbWFykCwJSGlFKUaBVLMmgWR0Cnt5zgl4TsdX2UKGgGaAloD0MIIEWduYfkBcCUhpRSlGgVSzJoFkdAp7diKk2xZHV9lChoBmgJaA9DCEX11sBWyQLAlIaUUpRoFUsyaBZHQKe3Iood+5R1fZQoaAZoCWgPQwgY7fFCOgwRwJSGlFKUaBVLMmgWR0CnuN5zYEntdX2UKGgGaAloD0MIRSkhWFXPCMCUhpRSlGgVSzJoFkdAp7iikwevIXV9lChoBmgJaA9DCCDRBIpYJADAlIaUUpRoFUsyaBZHQKe4Z9WIXTF1fZQoaAZoCWgPQwjEQNe+gB4CwJSGlFKUaBVLMmgWR0CnuCf5LytndX2UKGgGaAloD0MI0gFJ2LfT/r+UhpRSlGgVSzJoFkdAp7n48Md92HV9lChoBmgJaA9DCEdxjjo6bgfAlIaUUpRoFUsyaBZHQKe5vVpblil1fZQoaAZoCWgPQwhZar3faAcDwJSGlFKUaBVLMmgWR0CnuYJ/G2kSdX2UKGgGaAloD0MITRHg9C4+AMCUhpRSlGgVSzJoFkdAp7lCwhW5pnV9lChoBmgJaA9DCETecvVjk/m/lIaUUpRoFUsyaBZHQKe68dU83dd1fZQoaAZoCWgPQwgSwM3ixYICwJSGlFKUaBVLMmgWR0CnurZQP7N0dX2UKGgGaAloD0MIDw9h/DReEMCUhpRSlGgVSzJoFkdAp7p7ronrp3V9lChoBmgJaA9DCJQRF4BGSQHAlIaUUpRoFUsyaBZHQKe6O+W4Vh11fZQoaAZoCWgPQwikwW1t4VkAwJSGlFKUaBVLMmgWR0Cnu/hnjABUdX2UKGgGaAloD0MIb/JbdLL0CsCUhpRSlGgVSzJoFkdAp7u8q6OHWXV9lChoBmgJaA9DCDBMpgpGZfW/lIaUUpRoFUsyaBZHQKe7gctoSL91fZQoaAZoCWgPQwjlKavpesIKwJSGlFKUaBVLMmgWR0Cnu0H/1g6VdX2UKGgGaAloD0MIdJfEWRG1BcCUhpRSlGgVSzJoFkdAp7z4U+LWJHV9lChoBmgJaA9DCAAC1qpdkwjAlIaUUpRoFUsyaBZHQKe8vMIu5Bl1fZQoaAZoCWgPQwjXFMjsLNoEwJSGlFKUaBVLMmgWR0CnvIIZqEeydX2UKGgGaAloD0MIwR9+/ntwB8CUhpRSlGgVSzJoFkdAp7xCWu5jIHV9lChoBmgJaA9DCINMMnIWtg/AlIaUUpRoFUsyaBZHQKe9/ER8MNN1fZQoaAZoCWgPQwj76qpALQYIwJSGlFKUaBVLMmgWR0CnvcCBXjlxdX2UKGgGaAloD0MIIXTQJRz6AsCUhpRSlGgVSzJoFkdAp72F1fVqe3V9lChoBmgJaA9DCA8J3/sb9ADAlIaUUpRoFUsyaBZHQKe9Rgb6xgR1fZQoaAZoCWgPQwirJoi6D2ALwJSGlFKUaBVLMmgWR0CnvvHVoYeldX2UKGgGaAloD0MITOKsiJqoCsCUhpRSlGgVSzJoFkdAp761/SYw7HV9lChoBmgJaA9DCJeQD3o2qwbAlIaUUpRoFUsyaBZHQKe+e2XLNfR1fZQoaAZoCWgPQwhN+KV+3nQJwJSGlFKUaBVLMmgWR0CnvjvIXCTEdX2UKGgGaAloD0MILNSa5h0nAMCUhpRSlGgVSzJoFkdAp7/uH+Idl3V9lChoBmgJaA9DCEvoLomzIvm/lIaUUpRoFUsyaBZHQKe/smdiDul1fZQoaAZoCWgPQwhOmgZF80ACwJSGlFKUaBVLMmgWR0Cnv3d7F85TdX2UKGgGaAloD0MIVG6iluYmEMCUhpRSlGgVSzJoFkdAp783jKgZj3V9lChoBmgJaA9DCOTziqceKfq/lIaUUpRoFUsyaBZHQKfA37+DOC51fZQoaAZoCWgPQwiVYkfjUH/9v5SGlFKUaBVLMmgWR0CnwKPmozeodX2UKGgGaAloD0MIp1mg3SHlA8CUhpRSlGgVSzJoFkdAp8BpP420iXV9lChoBmgJaA9DCDiie9Y1mgDAlIaUUpRoFUsyaBZHQKfAKYlY2bZ1fZQoaAZoCWgPQwgnwLD8+RYKwJSGlFKUaBVLMmgWR0Cnwd+dCmdidX2UKGgGaAloD0MI1IBB0qfVCsCUhpRSlGgVSzJoFkdAp8Gj987ZF3V9lChoBmgJaA9DCKCJsOHpVfi/lIaUUpRoFUsyaBZHQKfBaSeyzHF1fZQoaAZoCWgPQwgRxk/j3jwLwJSGlFKUaBVLMmgWR0CnwSl2mpEQdX2UKGgGaAloD0MIQWSRJt6B+r+UhpRSlGgVSzJoFkdAp8LeBH09Q3V9lChoBmgJaA9DCHpQUIpWDgjAlIaUUpRoFUsyaBZHQKfCoiiZfD11fZQoaAZoCWgPQwjzABb59SMKwJSGlFKUaBVLMmgWR0CnwmeJ53TvdX2UKGgGaAloD0MID0WBPpFHBMCUhpRSlGgVSzJoFkdAp8IntBv733V9lChoBmgJaA9DCO2fpwGDpAHAlIaUUpRoFUsyaBZHQKfD2FzMibF1fZQoaAZoCWgPQwg6H54lyAj+v5SGlFKUaBVLMmgWR0Cnw5yflIVedX2UKGgGaAloD0MI9u0kIvzrBsCUhpRSlGgVSzJoFkdAp8NhzYEns3V9lChoBmgJaA9DCMReKGA7GAvAlIaUUpRoFUsyaBZHQKfDIdpZfUp1fZQoaAZoCWgPQwiYTBWMSsoBwJSGlFKUaBVLMmgWR0CnxM4lIEr5dX2UKGgGaAloD0MI3q6Xpggw+L+UhpRSlGgVSzJoFkdAp8SSZpi7TXV9lChoBmgJaA9DCBO7trdbMgvAlIaUUpRoFUsyaBZHQKfEV5cC5mR1fZQoaAZoCWgPQwhjesISD1gQwJSGlFKUaBVLMmgWR0CnxBe8wpOOdX2UKGgGaAloD0MIFVYqqKh6BsCUhpRSlGgVSzJoFkdAp8XPmaH9FXV9lChoBmgJaA9DCN/6sN6o1QrAlIaUUpRoFUsyaBZHQKfFk7Dl5nl1fZQoaAZoCWgPQwjgTEwXYlUBwJSGlFKUaBVLMmgWR0CnxVkpAlfJdX2UKGgGaAloD0MI5E1+i062CcCUhpRSlGgVSzJoFkdAp8UZXlr/KnV9lChoBmgJaA9DCCNJEK6AQgLAlIaUUpRoFUsyaBZHQKfGvxAjY7J1fZQoaAZoCWgPQwhT51HxfycCwJSGlFKUaBVLMmgWR0CnxoNRNyo5dX2UKGgGaAloD0MI6INlbOgGAcCUhpRSlGgVSzJoFkdAp8ZIfKZDzHV9lChoBmgJaA9DCC81Qj9TDwzAlIaUUpRoFUsyaBZHQKfGCKc/dIp1fZQoaAZoCWgPQwjvcaYJ228DwJSGlFKUaBVLMmgWR0Cnx7b48EFGdX2UKGgGaAloD0MIjzhkA+mi/b+UhpRSlGgVSzJoFkdAp8d7gIhQnHV9lChoBmgJaA9DCBCTcCGPIPu/lIaUUpRoFUsyaBZHQKfHQN5MURF1fZQoaAZoCWgPQwhzY3rCEm8DwJSGlFKUaBVLMmgWR0CnxwGKQ7tBdX2UKGgGaAloD0MI6Phoccaw9r+UhpRSlGgVSzJoFkdAp8ioAhje9HV9lChoBmgJaA9DCM3mcRjMXwnAlIaUUpRoFUsyaBZHQKfIbBl+Vkd1fZQoaAZoCWgPQwgTu7a3W5IDwJSGlFKUaBVLMmgWR0CnyDFolD4QdX2UKGgGaAloD0MI3L3cJ0fhBcCUhpRSlGgVSzJoFkdAp8fxemelK3V9lChoBmgJaA9DCFlrKLUX0fa/lIaUUpRoFUsyaBZHQKfJnp3X7Lt1fZQoaAZoCWgPQwi9GqA01CgMwJSGlFKUaBVLMmgWR0CnyWK20AtGdX2UKGgGaAloD0MIwYu+gjTDCcCUhpRSlGgVSzJoFkdAp8kn+jua4XV9lChoBmgJaA9DCHbgnBGlffq/lIaUUpRoFUsyaBZHQKfI6B91EE11fZQoaAZoCWgPQwi3tvC8VOz/v5SGlFKUaBVLMmgWR0CnyqQWFev7dX2UKGgGaAloD0MIuTe/YaLB97+UhpRSlGgVSzJoFkdAp8ppje9BbHV9lChoBmgJaA9DCAK5xJEH4va/lIaUUpRoFUsyaBZHQKfKL4Uvf0p1fZQoaAZoCWgPQwh1WUxsPu79v5SGlFKUaBVLMmgWR0CnyfBHkLhKdX2UKGgGaAloD0MI9DRgkPRpDMCUhpRSlGgVSzJoFkdAp8w2PxQSBnV9lChoBmgJaA9DCEZB8Pj2bvm/lIaUUpRoFUsyaBZHQKfL+vTPSlZ1fZQoaAZoCWgPQwjDgCVXsXj/v5SGlFKUaBVLMmgWR0Cny8CxFAmidX2UKGgGaAloD0MISN3OvvIABsCUhpRSlGgVSzJoFkdAp8uBha1Ti3V9lChoBmgJaA9DCFd3LLZJ5QDAlIaUUpRoFUsyaBZHQKfNzXdTHbR1fZQoaAZoCWgPQwgKTKd1G5QLwJSGlFKUaBVLMmgWR0CnzZLc9GI9dX2UKGgGaAloD0MIJCU9DK3OBsCUhpRSlGgVSzJoFkdAp81ZYs/Y8XV9lChoBmgJaA9DCEcFTraBu/+/lIaUUpRoFUsyaBZHQKfNGgvlEJB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc523ce40d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc523ecae80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686988741668100144, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+0OTCPpulAr2EY+A+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAk8UKv6eyKr/6X8I+PxuxvS0Uiz/PLPy9o4LsPkbZq7/U7Ly/+hqWv4A9PD8oepS+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDzQ5MI+m6UCvYRj4D6HyYs8iQQMvN/TiDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.38065195 -0.03189621 0.43825924]\n [ 0.38065195 -0.03189621 0.43825924]\n [ 0.38065195 -0.03189621 0.43825924]\n [ 0.38065195 -0.03189621 0.43825924]]", "desired_goal": "[[-0.54207724 -0.6667885 0.3796385 ]\n [-0.08647775 1.0865532 -0.12313234]\n [ 0.46193418 -1.3425682 -1.4759774 ]\n [-1.1726983 0.7353134 -0.28999448]]", "observation": "[[ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]\n [ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]\n [ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]\n [ 0.38065195 -0.03189621 0.43825924 0.01706387 -0.008546 0.01670259]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAI0K2PRp3oL06Drw94aUvPeOlVL1ikHw+4BRMvQpqJzwAqXE93hcSPrF9DT0AI0g+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.08899333 -0.07835217 0.09182401]\n [ 0.0428828 -0.05191601 0.24664453]\n [-0.0498246 0.01021815 0.05899906]\n [ 0.14266917 0.0345437 0.19544601]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIaxFRTN7QEMCUhpRSlIwBbJRLMowBdJRHQKleVzySV4Z1fZQoaAZoCWgPQwgEyTuHMkQTwJSGlFKUaBVLMmgWR0CpXg4ecQRPdX2UKGgGaAloD0MIMBAEyNCxC8CUhpRSlGgVSzJoFkdAqV3RcPe54HV9lChoBmgJaA9DCIaOHVTi+hHAlIaUUpRoFUsyaBZHQKldkoy9EkV1fZQoaAZoCWgPQwjon+BiRY0HwJSGlFKUaBVLMmgWR0CpYDqioKlYdX2UKGgGaAloD0MItYmT+x1qB8CUhpRSlGgVSzJoFkdAqV/yn+AEuHV9lChoBmgJaA9DCEpdMo6RjAjAlIaUUpRoFUsyaBZHQKlftnscABF1fZQoaAZoCWgPQwglea7vwwH9v5SGlFKUaBVLMmgWR0CpX3f5DZ13dX2UKGgGaAloD0MIn+i68INDG8CUhpRSlGgVSzJoFkdAqWH/dyksSXV9lChoBmgJaA9DCN5UpMLYggLAlIaUUpRoFUsyaBZHQKlhtPRArx11fZQoaAZoCWgPQwizeRwG89cTwJSGlFKUaBVLMmgWR0CpYXeGfwqidX2UKGgGaAloD0MIRDUlWYdzE8CUhpRSlGgVSzJoFkdAqWE4H9m6G3V9lChoBmgJaA9DCJtWCoFcQgvAlIaUUpRoFUsyaBZHQKljBtVrAQB1fZQoaAZoCWgPQwiDpbqAlwkQwJSGlFKUaBVLMmgWR0CpYrz1kDp1dX2UKGgGaAloD0MIyaoINxnVGMCUhpRSlGgVSzJoFkdAqWJ/e7+T/3V9lChoBmgJaA9DCIU/w5s1WA3AlIaUUpRoFUsyaBZHQKliQB3A2yd1fZQoaAZoCWgPQwgJqdvZV94RwJSGlFKUaBVLMmgWR0CpZBYFzMibdX2UKGgGaAloD0MIY+/FF+1RDcCUhpRSlGgVSzJoFkdAqWPLsD4gzXV9lChoBmgJaA9DCE0UIXU7GwXAlIaUUpRoFUsyaBZHQKljjkzXSSh1fZQoaAZoCWgPQwhHrwYoDVUBwJSGlFKUaBVLMmgWR0CpY07lijL0dX2UKGgGaAloD0MIeEMaFTj5E8CUhpRSlGgVSzJoFkdAqWUiAjIJaHV9lChoBmgJaA9DCLEaS1gbAwzAlIaUUpRoFUsyaBZHQKlk19+gDih1fZQoaAZoCWgPQwgIW+z2WYUGwJSGlFKUaBVLMmgWR0CpZJpvo/zKdX2UKGgGaAloD0MIUMJM27+SEcCUhpRSlGgVSzJoFkdAqWRbDEWIoHV9lChoBmgJaA9DCOksswjFlvy/lIaUUpRoFUsyaBZHQKlmU90zTF51fZQoaAZoCWgPQwiV1AloIowLwJSGlFKUaBVLMmgWR0CpZgqBun/DdX2UKGgGaAloD0MIg2vu6H85GcCUhpRSlGgVSzJoFkdAqWXOJSBK+XV9lChoBmgJaA9DCKq7sgsG1xLAlIaUUpRoFUsyaBZHQKlljqW1MM91fZQoaAZoCWgPQwiZR/5g4BkPwJSGlFKUaBVLMmgWR0CpZ3EAo5PudX2UKGgGaAloD0MIVix+U1gpAsCUhpRSlGgVSzJoFkdAqWcnek56t3V9lChoBmgJaA9DCJAWZwxzchPAlIaUUpRoFUsyaBZHQKlm6w+t8u11fZQoaAZoCWgPQwgYIxKFlqUXwJSGlFKUaBVLMmgWR0CpZqxgAp8XdX2UKGgGaAloD0MIe9egL73dB8CUhpRSlGgVSzJoFkdAqWiC9K28ZnV9lChoBmgJaA9DCDnv/+OEyRDAlIaUUpRoFUsyaBZHQKloOJiRW911fZQoaAZoCWgPQwjMCdrk8HkUwJSGlFKUaBVLMmgWR0CpZ/tKIznBdX2UKGgGaAloD0MIqknwhjRqEcCUhpRSlGgVSzJoFkdAqWe8cfeUIXV9lChoBmgJaA9DCIf4hy09ehXAlIaUUpRoFUsyaBZHQKlpqmCROlB1fZQoaAZoCWgPQwj3Bl+YTJUDwJSGlFKUaBVLMmgWR0CpaV/SpiqidX2UKGgGaAloD0MIKxVUVP16E8CUhpRSlGgVSzJoFkdAqWkjCk43m3V9lChoBmgJaA9DCBUdyeU/pBjAlIaUUpRoFUsyaBZHQKlo44xUNrl1fZQoaAZoCWgPQwiZuiu7YJAWwJSGlFKUaBVLMmgWR0CparhDPWxydX2UKGgGaAloD0MIVz82yY/YGMCUhpRSlGgVSzJoFkdAqWpuDDjzZ3V9lChoBmgJaA9DCEVoBBvXHwbAlIaUUpRoFUsyaBZHQKlqMLofSx91fZQoaAZoCWgPQwi/uFSlLS73v5SGlFKUaBVLMmgWR0CpafGVAzHkdX2UKGgGaAloD0MI3EjZImnHGcCUhpRSlGgVSzJoFkdAqWvDmW+oL3V9lChoBmgJaA9DCACo4sYtlhnAlIaUUpRoFUsyaBZHQKlreTnq3Vl1fZQoaAZoCWgPQwhAwjBgyWUYwJSGlFKUaBVLMmgWR0CpazvES/TLdX2UKGgGaAloD0MILESHwJEgAcCUhpRSlGgVSzJoFkdAqWr8SXdCV3V9lChoBmgJaA9DCNmvO915UhPAlIaUUpRoFUsyaBZHQKls1UCJXQt1fZQoaAZoCWgPQwihZHJqZ2gTwJSGlFKUaBVLMmgWR0CpbIrvkRzzdX2UKGgGaAloD0MIDHTtC+ilCMCUhpRSlGgVSzJoFkdAqWxNmnO0LXV9lChoBmgJaA9DCLlt36P+egjAlIaUUpRoFUsyaBZHQKlsDiz9jwx1fZQoaAZoCWgPQwgyHqUSnkAQwJSGlFKUaBVLMmgWR0Cpbei1JDmbdX2UKGgGaAloD0MIUduGURA8+r+UhpRSlGgVSzJoFkdAqW2eZ5Rj0HV9lChoBmgJaA9DCFzK+WLvxQnAlIaUUpRoFUsyaBZHQKltYLNwBHV1fZQoaAZoCWgPQwg7wmnBi779v5SGlFKUaBVLMmgWR0CpbSGNR3vAdX2UKGgGaAloD0MIKVq5F5jlEMCUhpRSlGgVSzJoFkdAqW782DQJHHV9lChoBmgJaA9DCFga+FENWwzAlIaUUpRoFUsyaBZHQKlusqEOAiF1fZQoaAZoCWgPQwiasWg6O/kawJSGlFKUaBVLMmgWR0CpbnU1qFh5dX2UKGgGaAloD0MIdVYL7DGxGMCUhpRSlGgVSzJoFkdAqW410cOsk3V9lChoBmgJaA9DCPmFV5I8lwPAlIaUUpRoFUsyaBZHQKlwJ7laKUF1fZQoaAZoCWgPQwjNdRppqdwUwJSGlFKUaBVLMmgWR0Cpb9181Gb1dX2UKGgGaAloD0MI7q8e9622EsCUhpRSlGgVSzJoFkdAqW+gHmig03V9lChoBmgJaA9DCEqaP6a1CQ3AlIaUUpRoFUsyaBZHQKlvYLNwBHV1fZQoaAZoCWgPQwgnoImw4en7v5SGlFKUaBVLMmgWR0CpcTf8uSOjdX2UKGgGaAloD0MIXcXiN4VVDMCUhpRSlGgVSzJoFkdAqXDtvddmhHV9lChoBmgJaA9DCGoYPiKmxA3AlIaUUpRoFUsyaBZHQKlwsEf1Yhd1fZQoaAZoCWgPQwjQKcjPRm4SwJSGlFKUaBVLMmgWR0CpcHCvxH5KdX2UKGgGaAloD0MIRDF5A8w8CcCUhpRSlGgVSzJoFkdAqXJRswco6XV9lChoBmgJaA9DCO2A64oZIQLAlIaUUpRoFUsyaBZHQKlyB47A+IN1fZQoaAZoCWgPQwi7D0BqE0cKwJSGlFKUaBVLMmgWR0CpccoV2zOYdX2UKGgGaAloD0MIE2ba/pX1FMCUhpRSlGgVSzJoFkdAqXGKpR4yGnV9lChoBmgJaA9DCCVATS1bKxHAlIaUUpRoFUsyaBZHQKlzeBdUsFt1fZQoaAZoCWgPQwj3x3vVyuQZwJSGlFKUaBVLMmgWR0Cpcy3Vsk6cdX2UKGgGaAloD0MIm49rQ8XIFMCUhpRSlGgVSzJoFkdAqXLwbIcR2HV9lChoBmgJaA9DCCDtf4C16gDAlIaUUpRoFUsyaBZHQKlysWBSUC91fZQoaAZoCWgPQwilgoqqX3kTwJSGlFKUaBVLMmgWR0CpdKSFGoaUdX2UKGgGaAloD0MI7NtJRPjXFMCUhpRSlGgVSzJoFkdAqXRaMDOkcnV9lChoBmgJaA9DCHxl3qrrsATAlIaUUpRoFUsyaBZHQKl0HN34bjt1fZQoaAZoCWgPQwjTFAFO74IOwJSGlFKUaBVLMmgWR0Cpc92zWwu/dX2UKGgGaAloD0MIec4WEFr/EMCUhpRSlGgVSzJoFkdAqXWzM5fdAXV9lChoBmgJaA9DCBuADYgQNwrAlIaUUpRoFUsyaBZHQKl1aOuJUHZ1fZQoaAZoCWgPQwj7rDJTWn8OwJSGlFKUaBVLMmgWR0CpdSs+eOGTdX2UKGgGaAloD0MIns4VpYQAC8CUhpRSlGgVSzJoFkdAqXTrwpe/pXV9lChoBmgJaA9DCB+fkJ23kQnAlIaUUpRoFUsyaBZHQKl3dKaG5+Z1fZQoaAZoCWgPQwirzJTW39L+v5SGlFKUaBVLMmgWR0Cpdys1baAXdX2UKGgGaAloD0MIcw6eCU0SA8CUhpRSlGgVSzJoFkdAqXbvxri2lXV9lChoBmgJaA9DCAXfNH124AzAlIaUUpRoFUsyaBZHQKl2sQarFOx1fZQoaAZoCWgPQwi7fyxEh6ALwJSGlFKUaBVLMmgWR0CpeUO6mO2idX2UKGgGaAloD0MIQBcNGY/SC8CUhpRSlGgVSzJoFkdAqXj6ZlWfb3V9lChoBmgJaA9DCJ0tILQeHgfAlIaUUpRoFUsyaBZHQKl4vh4t6HF1fZQoaAZoCWgPQwjvHwvRIYAUwJSGlFKUaBVLMmgWR0CpeH+HzpX7dX2UKGgGaAloD0MIQ1Thz/BmAcCUhpRSlGgVSzJoFkdAqXtRX0XgtXV9lChoBmgJaA9DCIOj5NU5hgDAlIaUUpRoFUsyaBZHQKl7CKNQ0oB1fZQoaAZoCWgPQwiGPe3w1wQEwJSGlFKUaBVLMmgWR0Cpesv8hs68dX2UKGgGaAloD0MI2nOZmgQPBsCUhpRSlGgVSzJoFkdAqXqO10DEFXV9lChoBmgJaA9DCCC0Hr5MNBPAlIaUUpRoFUsyaBZHQKl9UALApKB1fZQoaAZoCWgPQwgN/+kGCkwVwJSGlFKUaBVLMmgWR0CpfQZfdAPedX2UKGgGaAloD0MIjGSPUDO0EsCUhpRSlGgVSzJoFkdAqXzKHGjsU3V9lChoBmgJaA9DCANeZtgomxLAlIaUUpRoFUsyaBZHQKl8i2PT5O91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -2.252783397771418, "std_reward": 0.5445524211013847, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T07:45:12.444783"}
 
1
+ {"mean_reward": -4.31851173597388, "std_reward": 1.082812096175531, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T08:53:28.530850"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b466b52abbf363a203919bf6be2f81ff650fc82e2c809e122cc685f68587f172
3
  size 2387
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7522327c0ed696b57322bca4b63ce2c48325e7394a8886f0f1e39f03cb10167d
3
  size 2387