Edit model card

Model Description

Model created by analyzing and selecting the optimal layers from other Qwen2.5-7B models based on their dimensional utilization efficiency, measured by the Normalized Effective Rank (NER). Computed like:

  • Input: Weight matrix for each model layer
  • Compute singular values σᵢ where σᵢ ≥ 0 # σᵢ represents the importance of each dimension
  • Filter values above numerical threshold (>1e-12)
  • Sum all singular values: S = Σσᵢ # S acts as normalization factor
  • Create probability distribution: pᵢ = σᵢ/S # converts singular values to probabilities summing to 1
  • Compute Shannon entropy: H = -Σ(pᵢ * log₂(pᵢ)) # measures information content
  • Calculate maximum possible entropy: H_max = log₂(n)
  • Final NER score = H/H_max # normalizes score to [0,1] range
  • Results in value between 0 and 1 for each model layer

Creating Composite Model

Code here: https://huggingface.co/jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0/blob/main/ner_merge.py

Code functions:

  • Download selected models from Hugging Face Hub
  • Calculate Normalized Effective Rank (NER) for each layer within each model
  • Define model and layer name pairs that have highest NER for each layer based on their NER scores
  • Incrementally build a composite model using layer with highest NER from model pool
  • Save merge reports documenting layer sources
  • Copy config and tokenizer files from base model
  • Save the composite model with complete weights # model ready to use

Configfile:

base_model: "Qwen/Qwen2.5-7B"

fine_tuned_models: # uncomment the models you want to merge

#- "Qwen/Qwen2.5-7B"

#- "Qwen/Qwen2.5-7B-Instruct"

#- "EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1"

#- "FourOhFour/Vapor_v2_7B"

#- "Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2"

#- "happzy2633/qwen2.5-7b-ins-v3"

#- "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2"

#- "HumanLLMs/Humanish-Qwen2.5-7B-Instruct"

#- "Orion-zhen/Qwen2.5-7B-Instruct-Uncensored"

#- "Orion-zhen/Meissa-Qwen2.5-7B-Instruct"

#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v0.9"

#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0"

#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.1"

#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.2"

#- "AmberYifan/Qwen2.5-7B-dpo-2k"

#- "sethuiyer/Qwen2.5-7B-Anvita"

#- "rombodawg/Rombos-LLM-V2.5-Qwen-7b"

#- "Cran-May/T.E-8.1"

#- "beomi/Qwen2.5-7B-Instruct-kowiki-qa"

#- "Orion-zhen/Qwen2.5-7B-Gutenberg-KTO"

#- "fblgit/cybertron-v4-qw7B-MGS"

#- "nguyentd/FinancialAdvice-Qwen2.5-7B"

#- "WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B"

#- "edgerunner-ai/EdgeRunner-Command-Nested"

#- "katanemo/Arch-Function-7B"

#- "DeepGlint-AI/llava-mlcd-qwen2.5-7b"

#- "mergekit-community/mergekit-slerp-aflqaqy"

#- "mergekit-community/mergekit-ties-inxwsfo"

#- "Qwen/Qwen2.5-Coder-7B-Instruct"

#- "Qwen/Qwen2.5-Math-7B-Instruct"

#- "Qwen/Qwen2.5-Coder-7B"

#- "Qwen/Qwen2.5-Math-7B"

#- "thomas-yanxin/XinYuan-Qwen2.5-7B-0917"

#- "jbjeong91/Qwen2.5_7B_IST_StoryGen_vanilla"

#- "AmberYifan/Qwen2.5-7B-dpo-2k-hhrlhf"

#- "jbjeong91/Qwen2.5_7B_IST_StoryGen_test2"

models_dir: "./input_models/"

output_dir: "./merged_model/"

metric_dir: "./metrics/"

Downloads last month
19
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.4

Base model

Qwen/Qwen2.5-7B
Finetuned
(64)
this model
Quantizations
2 models