File size: 3,373 Bytes
ade6d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-7B
pipeline_tag: text-generation
tags:
- not-for-all-audiences
language:
- en
library_name: transformers
---
## Model Description
Model created by analyzing and selecting the optimal layers from other Qwen2.5-7B models based on their dimensional utilization efficiency, measured by the Normalized Effective Rank (NER). Computed like:
- Input: Weight matrix for each model layer
- Compute singular values σᵢ where σᵢ ≥ 0 # σᵢ represents the importance of each dimension
- Filter values above numerical threshold (>1e-12)
- Sum all singular values: S = Σσᵢ # S acts as normalization factor
- Create probability distribution: pᵢ = σᵢ/S # converts singular values to probabilities summing to 1
- Compute Shannon entropy: H = -Σ(pᵢ * log₂(pᵢ)) # measures information content
- Calculate maximum possible entropy: H_max = log₂(n)
- Final NER score = H/H_max # normalizes score to [0,1] range
- Results in value between 0 and 1 for each model layer
## Creating Composite Model
Code here: https://huggingface.co/jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0/blob/main/ner_merge.py
Code functions:
- Download selected models from Hugging Face Hub
- Calculate Normalized Effective Rank (NER) for each layer within each model
- Define model and layer name pairs that have highest NER for each layer based on their NER scores
- Incrementally build a composite model using layer with highest NER from model pool
- Save merge reports documenting layer sources
- Copy config and tokenizer files from base model
- Save the composite model with complete weights # model ready to use
Configfile:
base_model: "Qwen/Qwen2.5-7B"
fine_tuned_models: # uncomment the models you want to merge
#- "Qwen/Qwen2.5-7B"
#- "Qwen/Qwen2.5-7B-Instruct"
#- "EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1"
#- "FourOhFour/Vapor_v2_7B"
#- "Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2"
#- "happzy2633/qwen2.5-7b-ins-v3"
#- "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2"
#- "HumanLLMs/Humanish-Qwen2.5-7B-Instruct"
#- "Orion-zhen/Qwen2.5-7B-Instruct-Uncensored"
#- "Orion-zhen/Meissa-Qwen2.5-7B-Instruct"
#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v0.9"
#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0"
#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.1"
#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.2"
#- "AmberYifan/Qwen2.5-7B-dpo-2k"
#- "sethuiyer/Qwen2.5-7B-Anvita"
#- "rombodawg/Rombos-LLM-V2.5-Qwen-7b"
#- "Cran-May/T.E-8.1"
#- "beomi/Qwen2.5-7B-Instruct-kowiki-qa"
#- "Orion-zhen/Qwen2.5-7B-Gutenberg-KTO"
#- "fblgit/cybertron-v4-qw7B-MGS"
#- "nguyentd/FinancialAdvice-Qwen2.5-7B"
#- "WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B"
#- "edgerunner-ai/EdgeRunner-Command-Nested"
#- "katanemo/Arch-Function-7B"
#- "DeepGlint-AI/llava-mlcd-qwen2.5-7b"
#- "mergekit-community/mergekit-slerp-aflqaqy"
#- "mergekit-community/mergekit-ties-inxwsfo"
#- "Qwen/Qwen2.5-Coder-7B-Instruct"
#- "Qwen/Qwen2.5-Math-7B-Instruct"
#- "Qwen/Qwen2.5-Coder-7B"
#- "Qwen/Qwen2.5-Math-7B"
#- "thomas-yanxin/XinYuan-Qwen2.5-7B-0917"
#- "jbjeong91/Qwen2.5_7B_IST_StoryGen_vanilla"
#- "AmberYifan/Qwen2.5-7B-dpo-2k-hhrlhf"
#- "jbjeong91/Qwen2.5_7B_IST_StoryGen_test2"
models_dir: "./input_models/"
output_dir: "./merged_model/"
metric_dir: "./metrics/" |