--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: qlora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: theory_of_mind_airoboros_fixed.json type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: false pad_to_sequence_len: true lora_r: 128 lora_alpha: 256 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 4 num_epochs: 5 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```

# qlora-out This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3182 | 0.05 | 1 | 1.3547 | | 1.2887 | 0.26 | 5 | 1.2017 | | 1.1629 | 0.52 | 10 | 1.2319 | | 1.1734 | 0.78 | 15 | 1.2364 | | 0.6007 | 1.04 | 20 | 1.3146 | | 0.4225 | 1.3 | 25 | 1.4244 | | 0.4144 | 1.56 | 30 | 1.4335 | | 0.5067 | 1.82 | 35 | 1.4505 | | 0.225 | 2.08 | 40 | 1.4928 | | 0.1646 | 2.34 | 45 | 1.7377 | | 0.1838 | 2.6 | 50 | 1.6058 | | 0.2294 | 2.86 | 55 | 1.6419 | | 0.0626 | 3.12 | 60 | 1.8140 | | 0.0383 | 3.38 | 65 | 2.0478 | | 0.0529 | 3.64 | 70 | 1.9511 | | 0.0555 | 3.9 | 75 | 1.9203 | | 0.0112 | 4.16 | 80 | 1.9597 | | 0.0152 | 4.42 | 85 | 2.0307 | | 0.0154 | 4.68 | 90 | 2.0652 | | 0.0147 | 4.94 | 95 | 2.0709 | ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.16.1 - Tokenizers 0.15.0