jeremierostan commited on
Commit
f2f644f
1 Parent(s): 7e18239

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ gemma-2-2b-it.Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ gemma-2-2b-it.bf16.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,676 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: gemma
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - conversational
7
+ - autoquant
8
+ - gguf
9
+ extra_gated_heading: Access Gemma on Hugging Face
10
+ extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
11
+ agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
12
+ Face and click below. Requests are processed immediately.
13
+ extra_gated_button_content: Acknowledge license
14
+ ---
15
+
16
+
17
+ # Gemma 2 model card
18
+
19
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
20
+
21
+ **Resources and Technical Documentation**:
22
+
23
+ * [Responsible Generative AI Toolkit][rai-toolkit]
24
+ * [Gemma on Kaggle][kaggle-gemma]
25
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma2]
26
+
27
+ **Terms of Use**: [Terms][terms]
28
+
29
+ **Authors**: Google
30
+
31
+ ## Model Information
32
+
33
+ Summary description and brief definition of inputs and outputs.
34
+
35
+ ### Description
36
+
37
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
38
+ built from the same research and technology used to create the Gemini models.
39
+ They are text-to-text, decoder-only large language models, available in English,
40
+ with open weights for both pre-trained variants and instruction-tuned variants.
41
+ Gemma models are well-suited for a variety of text generation tasks, including
42
+ question answering, summarization, and reasoning. Their relatively small size
43
+ makes it possible to deploy them in environments with limited resources such as
44
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
45
+ state of the art AI models and helping foster innovation for everyone.
46
+
47
+ ### Usage
48
+
49
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
50
+ ```sh
51
+ pip install -U transformers
52
+ ```
53
+
54
+ Then, copy the snippet from the section that is relevant for your usecase.
55
+
56
+ #### Running with the `pipeline` API
57
+
58
+ ```python
59
+ import torch
60
+ from transformers import pipeline
61
+
62
+ pipe = pipeline(
63
+ "text-generation",
64
+ model="google/gemma-2-2b-it",
65
+ model_kwargs={"torch_dtype": torch.bfloat16},
66
+ device="cuda", # replace with "mps" to run on a Mac device
67
+ )
68
+
69
+ messages = [
70
+ {"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
71
+ ]
72
+
73
+ outputs = pipe(messages, max_new_tokens=256)
74
+ assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
75
+ print(assistant_response)
76
+ # Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
77
+ ```
78
+
79
+ #### Running the model on a single / multi GPU
80
+
81
+ ```python
82
+ # pip install accelerate
83
+ from transformers import AutoTokenizer, AutoModelForCausalLM
84
+ import torch
85
+
86
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
87
+ model = AutoModelForCausalLM.from_pretrained(
88
+ "google/gemma-2-2b-it",
89
+ device_map="auto",
90
+ torch_dtype=torch.bfloat16,
91
+ )
92
+
93
+ input_text = "Write me a poem about Machine Learning."
94
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
95
+
96
+ outputs = model.generate(**input_ids, max_new_tokens=32)
97
+ print(tokenizer.decode(outputs[0]))
98
+ ```
99
+
100
+ You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
101
+ ```python
102
+ messages = [
103
+ {"role": "user", "content": "Write me a poem about Machine Learning."},
104
+ ]
105
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
106
+
107
+ outputs = model.generate(**input_ids, max_new_tokens=256)
108
+ print(tokenizer.decode(outputs[0]))
109
+ ```
110
+
111
+ <a name="precisions"></a>
112
+ #### Running the model on a GPU using different precisions
113
+
114
+ The native weights of this model were exported in `bfloat16` precision.
115
+
116
+ You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
117
+
118
+ * _Upcasting to `torch.float32`_
119
+
120
+ ```python
121
+ # pip install accelerate
122
+ from transformers import AutoTokenizer, AutoModelForCausalLM
123
+
124
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
125
+ model = AutoModelForCausalLM.from_pretrained(
126
+ "google/gemma-2-2b-it",
127
+ device_map="auto",
128
+ )
129
+
130
+ input_text = "Write me a poem about Machine Learning."
131
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
132
+
133
+ outputs = model.generate(**input_ids, max_new_tokens=32)
134
+ print(tokenizer.decode(outputs[0]))
135
+ ```
136
+
137
+ #### Running the model through a CLI
138
+
139
+ The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
140
+ for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
141
+ for getting started, then launch the CLI through the following command:
142
+
143
+ ```shell
144
+ local-gemma --model 2b --preset speed
145
+ ```
146
+
147
+ #### Quantized Versions through `bitsandbytes`
148
+
149
+ <details>
150
+ <summary>
151
+ Using 8-bit precision (int8)
152
+ </summary>
153
+
154
+ ```python
155
+ # pip install bitsandbytes accelerate
156
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
157
+
158
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
159
+
160
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
161
+ model = AutoModelForCausalLM.from_pretrained(
162
+ "google/gemma-2-2b-it",
163
+ quantization_config=quantization_config,
164
+ )
165
+
166
+ input_text = "Write me a poem about Machine Learning."
167
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
168
+
169
+ outputs = model.generate(**input_ids, max_new_tokens=32)
170
+ print(tokenizer.decode(outputs[0]))
171
+ ```
172
+ </details>
173
+
174
+ <details>
175
+ <summary>
176
+ Using 4-bit precision
177
+ </summary>
178
+
179
+ ```python
180
+ # pip install bitsandbytes accelerate
181
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
182
+
183
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
184
+
185
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
186
+ model = AutoModelForCausalLM.from_pretrained(
187
+ "google/gemma-2-2b-it",
188
+ quantization_config=quantization_config,
189
+ )
190
+
191
+ input_text = "Write me a poem about Machine Learning."
192
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
193
+
194
+ outputs = model.generate(**input_ids, max_new_tokens=32)
195
+ print(tokenizer.decode(outputs[0]))
196
+ ```
197
+ </details>
198
+
199
+ #### Advanced Usage
200
+
201
+ <details>
202
+ <summary>
203
+ Torch compile
204
+ </summary>
205
+
206
+ [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
207
+ inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
208
+
209
+ Note that two warm-up steps are required before the full inference speed is realised:
210
+
211
+ ```python
212
+ import os
213
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
214
+
215
+ from transformers import AutoTokenizer, Gemma2ForCausalLM
216
+ from transformers.cache_utils import HybridCache
217
+ import torch
218
+
219
+ torch.set_float32_matmul_precision("high")
220
+
221
+ # load the model + tokenizer
222
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
223
+ model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16)
224
+ model.to("cuda")
225
+
226
+ # apply the torch compile transformation
227
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
228
+
229
+ # pre-process inputs
230
+ input_text = "The theory of special relativity states "
231
+ model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
232
+ prompt_length = model_inputs.input_ids.shape[1]
233
+
234
+ # set-up k/v cache
235
+ past_key_values = HybridCache(
236
+ config=model.config,
237
+ max_batch_size=1,
238
+ max_cache_len=model.config.max_position_embeddings,
239
+ device=model.device,
240
+ dtype=model.dtype
241
+ )
242
+
243
+ # enable passing kv cache to generate
244
+ model._supports_cache_class = True
245
+ model.generation_config.cache_implementation = None
246
+
247
+ # two warm-up steps
248
+ for idx in range(2):
249
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
250
+ past_key_values.reset()
251
+
252
+ # fast run
253
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
254
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
255
+ ```
256
+
257
+ For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
258
+
259
+ </details>
260
+
261
+ ### Inputs and outputs
262
+
263
+ * **Input:** Text string, such as a question, a prompt, or a document to be
264
+ summarized.
265
+ * **Output:** Generated English-language text in response to the input, such
266
+ as an answer to a question, or a summary of a document.
267
+
268
+ ### Citation
269
+
270
+ ```none
271
+ @article{gemma_2024,
272
+ title={Gemma},
273
+ url={https://www.kaggle.com/m/3301},
274
+ DOI={10.34740/KAGGLE/M/3301},
275
+ publisher={Kaggle},
276
+ author={Gemma Team},
277
+ year={2024}
278
+ }
279
+ ```
280
+
281
+ ## Model Data
282
+
283
+ Data used for model training and how the data was processed.
284
+
285
+ ### Training Dataset
286
+
287
+ These models were trained on a dataset of text data that includes a wide variety
288
+ of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
289
+ trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
290
+ Here are the key components:
291
+
292
+ * Web Documents: A diverse collection of web text ensures the model is exposed
293
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
294
+ English-language content.
295
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
296
+ programming languages, which improves its ability to generate code or
297
+ understand code-related questions.
298
+ * Mathematics: Training on mathematical text helps the model learn logical
299
+ reasoning, symbolic representation, and to address mathematical queries.
300
+
301
+ The combination of these diverse data sources is crucial for training a powerful
302
+ language model that can handle a wide variety of different tasks and text
303
+ formats.
304
+
305
+ ### Data Preprocessing
306
+
307
+ Here are the key data cleaning and filtering methods applied to the training
308
+ data:
309
+
310
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
311
+ applied at multiple stages in the data preparation process to ensure the
312
+ exclusion of harmful and illegal content.
313
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
314
+ reliable, automated techniques were used to filter out certain personal
315
+ information and other sensitive data from training sets.
316
+ * Additional methods: Filtering based on content quality and safety in line with
317
+ [our policies][safety-policies].
318
+
319
+ ## Implementation Information
320
+
321
+ Details about the model internals.
322
+
323
+ ### Hardware
324
+
325
+ Gemma was trained using the latest generation of
326
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
327
+
328
+ Training large language models requires significant computational power. TPUs,
329
+ designed specifically for matrix operations common in machine learning, offer
330
+ several advantages in this domain:
331
+
332
+ * Performance: TPUs are specifically designed to handle the massive computations
333
+ involved in training LLMs. They can speed up training considerably compared to
334
+ CPUs.
335
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
336
+ for the handling of large models and batch sizes during training. This can
337
+ lead to better model quality.
338
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
339
+ handling the growing complexity of large foundation models. You can distribute
340
+ training across multiple TPU devices for faster and more efficient processing.
341
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
342
+ solution for training large models compared to CPU-based infrastructure,
343
+ especially when considering the time and resources saved due to faster
344
+ training.
345
+ * These advantages are aligned with
346
+ [Google's commitments to operate sustainably][sustainability].
347
+
348
+ ### Software
349
+
350
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
351
+
352
+ JAX allows researchers to take advantage of the latest generation of hardware,
353
+ including TPUs, for faster and more efficient training of large models.
354
+
355
+ ML Pathways is Google's latest effort to build artificially intelligent systems
356
+ capable of generalizing across multiple tasks. This is specially suitable for
357
+ [foundation models][foundation-models], including large language models like
358
+ these ones.
359
+
360
+ Together, JAX and ML Pathways are used as described in the
361
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
362
+ controller' programming model of Jax and Pathways allows a single Python
363
+ process to orchestrate the entire training run, dramatically simplifying the
364
+ development workflow."
365
+
366
+ ## Evaluation
367
+
368
+ Model evaluation metrics and results.
369
+
370
+ ### Benchmark Results
371
+
372
+ These models were evaluated against a large collection of different datasets and
373
+ metrics to cover different aspects of text generation:
374
+
375
+ | Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
376
+ | ------------------------------ | ------------- | ------------- | ------------- | -------------- |
377
+ | [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
378
+ | [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
379
+ | [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
380
+ | [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
381
+ | [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
382
+ | [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
383
+ | [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
384
+ | [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
385
+ | [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
386
+ | [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
387
+ | [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
388
+ | [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
389
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
390
+ | [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
391
+ | [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
392
+ | [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
393
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
394
+
395
+ ## Ethics and Safety
396
+
397
+ Ethics and safety evaluation approach and results.
398
+
399
+ ### Evaluation Approach
400
+
401
+ Our evaluation methods include structured evaluations and internal red-teaming
402
+ testing of relevant content policies. Red-teaming was conducted by a number of
403
+ different teams, each with different goals and human evaluation metrics. These
404
+ models were evaluated against a number of different categories relevant to
405
+ ethics and safety, including:
406
+
407
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
408
+ policies including child sexual abuse and exploitation, harassment, violence
409
+ and gore, and hate speech.
410
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
411
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
412
+ * Memorization: Automated evaluation of memorization of training data, including
413
+ the risk of personally identifiable information exposure.
414
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
415
+ biological, radiological, and nuclear (CBRN) risks.
416
+
417
+ ### Evaluation Results
418
+
419
+ The results of ethics and safety evaluations are within acceptable thresholds
420
+ for meeting [internal policies][safety-policies] for categories such as child
421
+ safety, content safety, representational harms, memorization, large-scale harms.
422
+ On top of robust internal evaluations, the results of well-known safety
423
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
424
+ are shown here.
425
+
426
+ #### Gemma 2.0
427
+
428
+ | Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
429
+ | ------------------------ | ------------- | ------------- | ------------- | -------------- |
430
+ | [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
431
+ | [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
432
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
433
+ | [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
434
+ | [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
435
+ | [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
436
+ | [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
437
+ | [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
438
+ | [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
439
+
440
+ ## Dangerous Capability Evaluations
441
+
442
+ ### Evaluation Approach
443
+
444
+ We evaluated a range of dangerous capabilities:
445
+
446
+ - **Offensive cybersecurity:** To assess the model's potential for misuse in
447
+ cybersecurity contexts, we utilized both publicly available
448
+ Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
449
+ well as internally developed CTF challenges. These evaluations measure the
450
+ model's ability to exploit vulnerabilities and gain unauthorized access in
451
+ simulated environments.
452
+ - **Self-proliferation:** We evaluated the model's capacity for
453
+ self-proliferation by designing tasks that involve resource acquisition, code
454
+ execution, and interaction with remote systems. These evaluations assess
455
+ the model's ability to independently replicate and spread.
456
+ - **Persuasion:** To evaluate the model's capacity for persuasion and
457
+ deception, we conducted human persuasion studies. These studies involved
458
+ scenarios that measure the model's ability to build rapport, influence
459
+ beliefs, and elicit specific actions from human participants.
460
+
461
+ ### Evaluation Results
462
+
463
+ All evaluations are described in detail in
464
+ [Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
465
+ and in brief in the
466
+ [Gemma 2 technical report][tech-report].
467
+
468
+ <table>
469
+ <thead>
470
+ <tr>
471
+ <th>Evaluation</th>
472
+ <th>Capability</th>
473
+ <th>Gemma 2 IT 27B</th>
474
+ </tr>
475
+ </thead>
476
+ <tbody>
477
+ <tr>
478
+ <td>InterCode-CTF</td>
479
+ <td>Offensive cybersecurity</td>
480
+ <td>34/76 challenges</td>
481
+ </tr>
482
+ <tr>
483
+ <td>Internal CTF</td>
484
+ <td>Offensive cybersecurity</td>
485
+ <td>1/13 challenges</td>
486
+ </tr>
487
+ <tr>
488
+ <td>Hack the Box</td>
489
+ <td>Offensive cybersecurity</td>
490
+ <td>0/13 challenges</td>
491
+ </tr>
492
+ <tr>
493
+ <td>Self-proliferation early warning</td>
494
+ <td>Self-proliferation</td>
495
+ <td>1/10 challenges</td>
496
+ </tr>
497
+ <tr>
498
+ <td>Charm offensive</td>
499
+ <td>Persuasion</td>
500
+ <td>Percent of participants agreeing:
501
+ 81% interesting,
502
+ 75% would speak again,
503
+ 80% made personal connection</td>
504
+ </tr>
505
+ <tr>
506
+ <td>Click Links</td>
507
+ <td>Persuasion</td>
508
+ <td>34% of participants</td>
509
+ </tr>
510
+ <tr>
511
+ <td>Find Info</td>
512
+ <td>Persuasion</td>
513
+ <td>9% of participants</td>
514
+ </tr>
515
+ <tr>
516
+ <td>Run Code</td>
517
+ <td>Persuasion</td>
518
+ <td>11% of participants</td>
519
+ </tr>
520
+ <tr>
521
+ <td>Money talks</td>
522
+ <td>Persuasion</td>
523
+ <td>£3.72 mean donation</td>
524
+ </tr>
525
+ <tr>
526
+ <td>Web of Lies</td>
527
+ <td>Persuasion</td>
528
+ <td>18% mean shift towards correct belief, 1% mean shift towards
529
+ incorrect belief</td>
530
+ </tr>
531
+ </tbody>
532
+ </table>
533
+
534
+ ## Usage and Limitations
535
+
536
+ These models have certain limitations that users should be aware of.
537
+
538
+ ### Intended Usage
539
+
540
+ Open Large Language Models (LLMs) have a wide range of applications across
541
+ various industries and domains. The following list of potential uses is not
542
+ comprehensive. The purpose of this list is to provide contextual information
543
+ about the possible use-cases that the model creators considered as part of model
544
+ training and development.
545
+
546
+ * Content Creation and Communication
547
+ * Text Generation: These models can be used to generate creative text formats
548
+ such as poems, scripts, code, marketing copy, and email drafts.
549
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
550
+ service, virtual assistants, or interactive applications.
551
+ * Text Summarization: Generate concise summaries of a text corpus, research
552
+ papers, or reports.
553
+ * Research and Education
554
+ * Natural Language Processing (NLP) Research: These models can serve as a
555
+ foundation for researchers to experiment with NLP techniques, develop
556
+ algorithms, and contribute to the advancement of the field.
557
+ * Language Learning Tools: Support interactive language learning experiences,
558
+ aiding in grammar correction or providing writing practice.
559
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
560
+ by generating summaries or answering questions about specific topics.
561
+
562
+ ### Limitations
563
+
564
+ * Training Data
565
+ * The quality and diversity of the training data significantly influence the
566
+ model's capabilities. Biases or gaps in the training data can lead to
567
+ limitations in the model's responses.
568
+ * The scope of the training dataset determines the subject areas the model can
569
+ handle effectively.
570
+ * Context and Task Complexity
571
+ * LLMs are better at tasks that can be framed with clear prompts and
572
+ instructions. Open-ended or highly complex tasks might be challenging.
573
+ * A model's performance can be influenced by the amount of context provided
574
+ (longer context generally leads to better outputs, up to a certain point).
575
+ * Language Ambiguity and Nuance
576
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
577
+ nuances, sarcasm, or figurative language.
578
+ * Factual Accuracy
579
+ * LLMs generate responses based on information they learned from their
580
+ training datasets, but they are not knowledge bases. They may generate
581
+ incorrect or outdated factual statements.
582
+ * Common Sense
583
+ * LLMs rely on statistical patterns in language. They might lack the ability
584
+ to apply common sense reasoning in certain situations.
585
+
586
+ ### Ethical Considerations and Risks
587
+
588
+ The development of large language models (LLMs) raises several ethical concerns.
589
+ In creating an open model, we have carefully considered the following:
590
+
591
+ * Bias and Fairness
592
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
593
+ biases embedded in the training material. These models underwent careful
594
+ scrutiny, input data pre-processing described and posterior evaluations
595
+ reported in this card.
596
+ * Misinformation and Misuse
597
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
598
+ * Guidelines are provided for responsible use with the model, see the
599
+ [Responsible Generative AI Toolkit][rai-toolkit].
600
+ * Transparency and Accountability:
601
+ * This model card summarizes details on the models' architecture,
602
+ capabilities, limitations, and evaluation processes.
603
+ * A responsibly developed open model offers the opportunity to share
604
+ innovation by making LLM technology accessible to developers and researchers
605
+ across the AI ecosystem.
606
+
607
+ Risks identified and mitigations:
608
+
609
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
610
+ (using evaluation metrics, human review) and the exploration of de-biasing
611
+ techniques during model training, fine-tuning, and other use cases.
612
+ * Generation of harmful content: Mechanisms and guidelines for content safety
613
+ are essential. Developers are encouraged to exercise caution and implement
614
+ appropriate content safety safeguards based on their specific product policies
615
+ and application use cases.
616
+ * Misuse for malicious purposes: Technical limitations and developer and
617
+ end-user education can help mitigate against malicious applications of LLMs.
618
+ Educational resources and reporting mechanisms for users to flag misuse are
619
+ provided. Prohibited uses of Gemma models are outlined in the
620
+ [Gemma Prohibited Use Policy][prohibited-use].
621
+ * Privacy violations: Models were trained on data filtered for removal of PII
622
+ (Personally Identifiable Information). Developers are encouraged to adhere to
623
+ privacy regulations with privacy-preserving techniques.
624
+
625
+ ### Benefits
626
+
627
+ At the time of release, this family of models provides high-performance open
628
+ large language model implementations designed from the ground up for Responsible
629
+ AI development compared to similarly sized models.
630
+
631
+ Using the benchmark evaluation metrics described in this document, these models
632
+ have shown to provide superior performance to other, comparably-sized open model
633
+ alternatives.
634
+
635
+ [tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
636
+ [rai-toolkit]: https://ai.google.dev/responsible
637
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
638
+ [terms]: https://ai.google.dev/gemma/terms
639
+ [vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
640
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
641
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
642
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
643
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
644
+ [sustainability]: https://sustainability.google/operating-sustainably/
645
+ [jax]: https://github.com/google/jax
646
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
647
+ [sustainability]: https://sustainability.google/operating-sustainably/
648
+ [foundation-models]: https://ai.google/discover/foundation-models/
649
+ [gemini-2-paper]: https://goo.gle/gemma2report
650
+ [mmlu]: https://arxiv.org/abs/2009.03300
651
+ [hellaswag]: https://arxiv.org/abs/1905.07830
652
+ [piqa]: https://arxiv.org/abs/1911.11641
653
+ [socialiqa]: https://arxiv.org/abs/1904.09728
654
+ [boolq]: https://arxiv.org/abs/1905.10044
655
+ [winogrande]: https://arxiv.org/abs/1907.10641
656
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
657
+ [openbookqa]: https://arxiv.org/abs/1809.02789
658
+ [arc]: https://arxiv.org/abs/1911.01547
659
+ [triviaqa]: https://arxiv.org/abs/1705.03551
660
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
661
+ [humaneval]: https://arxiv.org/abs/2107.03374
662
+ [mbpp]: https://arxiv.org/abs/2108.07732
663
+ [gsm8k]: https://arxiv.org/abs/2110.14168
664
+ [realtox]: https://arxiv.org/abs/2009.11462
665
+ [bold]: https://arxiv.org/abs/2101.11718
666
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
667
+ [bbq]: https://arxiv.org/abs/2110.08193v2
668
+ [winogender]: https://arxiv.org/abs/1804.09301
669
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
670
+ [winobias]: https://arxiv.org/abs/1804.06876
671
+ [math]: https://arxiv.org/abs/2103.03874
672
+ [agieval]: https://arxiv.org/abs/2304.06364
673
+ [drop]: https://arxiv.org/abs/1903.00161
674
+ [big-bench]: https://arxiv.org/abs/2206.04615
675
+ [toxigen]: https://arxiv.org/abs/2203.09509
676
+ [eval-danger]: https://arxiv.org/abs/2403.13793
gemma-2-2b-it.Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0350a6ff414ca150972e1cfa818d22f876a0404153dbb08352909a0375e65fc4
3
+ size 1923278432
gemma-2-2b-it.bf16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa201611a35f81938e637ef2fdbafedc316ed576a2be319d09b0dc20f1769fdf
3
+ size 5235213920