--- language: - zh license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - formospeech/tat_asr_aligned model-index: - name: Whisper Tiny Taiwanese Simulated Android results: [] --- # Whisper Tiny Taiwanese Simulated Android This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set: - Loss: 0.7397 - Cer: 11.2806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1362 - training_steps: 13620 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.3641 | 0.9985 | 681 | 0.4668 | 19.0185 | | 0.2569 | 1.9971 | 1362 | 0.4366 | 14.5059 | | 0.1682 | 2.9956 | 2043 | 0.4342 | 13.5919 | | 0.1095 | 3.9941 | 2724 | 0.4588 | 13.0167 | | 0.0693 | 4.9927 | 3405 | 0.4854 | 12.6401 | | 0.0455 | 5.9912 | 4086 | 0.5303 | 13.1776 | | 0.0323 | 6.9897 | 4767 | 0.5626 | 12.8424 | | 0.0228 | 7.9883 | 5448 | 0.5940 | 12.4495 | | 0.0168 | 8.9868 | 6129 | 0.6214 | 12.4219 | | 0.0124 | 9.9853 | 6810 | 0.6661 | 13.1648 | | 0.0091 | 10.9839 | 7491 | 0.6534 | 12.1909 | | 0.0067 | 11.9824 | 8172 | 0.6671 | 12.1441 | | 0.0036 | 12.9809 | 8853 | 0.6948 | 12.0141 | | 0.0016 | 13.9795 | 9534 | 0.6962 | 11.7995 | | 0.0011 | 14.9780 | 10215 | 0.7180 | 11.6767 | | 0.0008 | 15.9765 | 10896 | 0.7170 | 11.5896 | | 0.0005 | 16.9751 | 11577 | 0.7260 | 11.5133 | | 0.0002 | 17.9736 | 12258 | 0.7299 | 11.3793 | | 0.0002 | 18.9721 | 12939 | 0.7373 | 11.2399 | | 0.0001 | 19.9707 | 13620 | 0.7397 | 11.2806 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1