ppo-LunarLander-v2 / config.json
jfelgate's picture
Upload PPO LunarLander-v2 trained agent
85d8605
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7daac08abb50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7daac08abbe0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7daac08abc70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7daac08abd00>", "_build": "<function ActorCriticPolicy._build at 0x7daac08abd90>", "forward": "<function ActorCriticPolicy.forward at 0x7daac08abe20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7daac08abeb0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7daac08abf40>", "_predict": "<function ActorCriticPolicy._predict at 0x7daac0894040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7daac08940d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7daac0894160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7daac08941f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7daaca6a0e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698285933211794203, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAACayob0NUxI+uvNQPRJ9rr6LZNw9zSGEvQAAAAAAAAAA2iWzvVwzKroXeqC7B+J2OJvXqbsKOz46AAAAAAAAgD9t2So+NmoCvIBnZr6HcMK8wBmjPvYK2r0AAIA/AACAP3P2gz1Ia6a68kFuPCxngrxpfZA6M/pjvQAAAAAAAIA/INRJvi5dpry6Rie+Ut6QvKFQET64mWI9AACAPwAAgD/az+O9n1VJP8nrJj671dK+F4RGvl1nbT4AAAAAAAAAADNvWryFc925g42BPP7agjUlama77ZVxNAAAgD8AAIA/88vgvRSehLpkuCa7SxYwtsAKCTs4iz46AACAPwAAgD/69Lg+8Y82Pw4Bir1nOea+lMxjPsBy6L0AAAAAAAAAADOnvbwKt1a5utPzuzk4nDbNzAQ75KMPtgAAgD8AAIA/jY6LPYN5Yrx6Ls69wJG0PJSUxj2VYpG9AAAAAAAAgD8zFtA8XKseuo6u5jqTffc1IqAuOim3A7oAAIA/AACAPwDQwjr2xAK6EmVYOy4ChbYkcT+5CMN9ugAAgD8AAIA/mnAFvYXz87ndM+O7fEqPOJ9XsjqC8jU5AACAPwAAgD8A1Xy9rjSmvK5J0jx5KkE9zskDPtjn9rwAAIA/AACAPzNznj20xQ0+5TUyvmYjer59I7u9ZpuhPQAAAAAAAAAAzdlpPfZIPLqVE0E68U1RNS0OpDvwPWK5AACAPwAAgD+aC3E9w/ErugpnmztmP2a5Bi5luuGrQboAAIA/AACAP01Q3D0fTb+5McglPO6mAz3114G64/riOwAAAAAAAIA/zbq7vOE4iLoN0Sq88dzHtY1ZQLkSLzo1AACAPwAAgD+z03q9w+VbuvOhtTpdH3+2Ui9yOwg+0rkAAIA/AACAPwCguDztlOs+bkZNvSZskr5Y3U292BcPPQAAAAAAAAAAkzhGvjYBWbzk4BY2awynsAAvxT2XhyC1AACAPwAAgD8zJS29Ro6hP4USG75Lwd6+oxAvvToRHD0AAAAAAAAAAGZ+s7wpGDW6mgavusNiObbm0DO6+QXLOQAAgD8AAIA/2oufvU3Kiz/dnBq+FWDUvk1u0L0KivK8AAAAAAAAAACaeT+8KWwjurf0lTlk1Y61e8X6uo7vrbgAAIA/AACAP80dlD3DNT+6ej2ZurBX9DcXHwe7qgchOQAAgD8AAIA/SBGUvs782j5gfKQ+toSuvpTVpL3rdmk9AAAAAAAAAACaaXc79qRkut1QK7wZCtu12JmVuZqpSzUAAIA/AACAP5qXC732UB+6NvxTvM72ZLzbl/06VURIvQAAAAAAAIA/Grm5PVyTSLqQC9O4vr2etSjOsjrty+83AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFz6epXIU8GMAWyUTegDjAF0lEdAns9aFuejEnV9lChoBkdAZ7ZMbm2b5WgHTegDaAhHQJ7SDS+g13t1fZQoaAZHQDx6RSxZ+x5oB0vJaAhHQJ7UUJWvKU51fZQoaAZHQGYwrsjVx0doB03oA2gIR0Ce3ZqEeyRkdX2UKGgGR0BiEfz+WGATaAdN6ANoCEdAnugq3d9DyHV9lChoBkdAY2P91EE1VGgHTegDaAhHQJ7sxETg2qF1fZQoaAZHQGS1In0Cih5oB03oA2gIR0Ce8Gvq1PWQdX2UKGgGR0BjHrEaVD8caAdN6ANoCEdAnvOuw5eZ5XV9lChoBkdAYXlYFJQLu2gHTegDaAhHQJ72e/Dcdo51fZQoaAZHQGPUufmLcbloB03oA2gIR0Ce+rM23rledX2UKGgGR0BnCNNnGsFMaAdN6ANoCEdAnv2xOtW+5HV9lChoBkdAZxdB2OhkAmgHTegDaAhHQJ7+eDwpe/p1fZQoaAZHQGMvBqTKT0RoB03oA2gIR0Ce/wiqABkqdX2UKGgGR0Be/SmhufmLaAdN6ANoCEdAnwfaDf3vhXV9lChoBkdAY93MyrPt2WgHTegDaAhHQJ+vxOymhuh1fZQoaAZHQGVK+UQkHD9oB03oA2gIR0CfsJj8k2P1dX2UKGgGR0BNP5eJHiFTaAdL1mgIR0Cftpl/H5rQdX2UKGgGR0BflBP420iRaAdN6ANoCEdAn7duanaWX3V9lChoBkdAZQ/T1CgK4WgHTegDaAhHQJ+7IuEmICV1fZQoaAZHQGEitgrpaA5oB03oA2gIR0CfvDcPe54GdX2UKGgGR0BiE4jKPn0TaAdN6ANoCEdAn8MbM9r433V9lChoBkdAY7i3vQWvbGgHTegDaAhHQJ/I34rSVnp1fZQoaAZHQGDUiaJAMUhoB03oA2gIR0CfyjXIU8FIdX2UKGgGR0BjO2TPjXFtaAdN6ANoCEdAn8t0b961LXV9lChoBkdAZMh14gRsdmgHTegDaAhHQJ/PT1OCXhR1fZQoaAZHQGEtuhCdBjZoB03oA2gIR0Cf1cZ2IO6NdX2UKGgGR0BkNUEovzvraAdN6ANoCEdAn+DSjk+5fHV9lChoBkdAW4+pFTefqWgHTegDaAhHQJ/lsYFaB7N1fZQoaAZHQEiKPMjeKsNoB0u/aAhHQJ/qYafjCHh1fZQoaAZHQGQKJiiItUZoB03oA2gIR0Cf6xoePq9odX2UKGgGR0Bge9kxyn1naAdN6ANoCEdAn+9ZfYzzmXV9lChoBkdAY/C3x4IKMWgHTegDaAhHQJ/03zoUzsR1fZQoaAZHQFIkT6i0v5BoB0vNaAhHQJ/2IDTz/ZN1fZQoaAZHQELkvQF9roJoB0uvaAhHQJ/9sQAdXDF1fZQoaAZHQGJoDABT4tZoB03oA2gIR0Cf/nbiqABldX2UKGgGR0Blnejh1klNaAdN6ANoCEdAoADo20iQk3V9lChoBkdAY5aALiMo+mgHTegDaAhHQKAB9oA4n4R1fZQoaAZHQGbN7VJ+UhVoB03oA2gIR0CgAz5r56+ndX2UKGgGR0BjY9ejVQQ+aAdN6ANoCEdAoARNFfAsTXV9lChoBkdALYkyLyc0+GgHS6hoCEdAoAeSxPfsNXV9lChoBkdAY8SX6ZYxL2gHTegDaAhHQKAKaqsEJSl1fZQoaAZHQDW6R5kbxVhoB0t7aAhHQKALR0hePaN1fZQoaAZHQF2mahHskY5oB03oA2gIR0CgEXqhUR4AdX2UKGgGR0A+fU7Sy+pPaAdLt2gIR0CgEoH8CPp7dX2UKGgGR0BgmqWZ7XxwaAdN6ANoCEdAoBOwjv/ipHV9lChoBkdARl9wPy08eWgHS75oCEdAoBRTUd7v5XV9lChoBkdAY1Xe9i+cpmgHTegDaAhHQKAVYHmA9V51fZQoaAZHQGO0uE25xzdoB03oA2gIR0CgFq6qsEJTdX2UKGgGR0BdUEfLcKw7aAdN6ANoCEdAoBec+kgwGnV9lChoBkdALnJT/ACW/2gHS7NoCEdAoBkHkkrwv3V9lChoBkdAOuCemNzbOGgHS9ZoCEdAoBlgtthuwXV9lChoBkdAXmF18stkF2gHTegDaAhHQKAaCBd2Pkt1fZQoaAZHQGKjzZpSJj5oB03oA2gIR0CgGkfJvHcUdX2UKGgGR0BdSxpDeCTVaAdN6ANoCEdAoBp5bUwztXV9lChoBkdAQeNWS2Yv4GgHS6toCEdAoBz2Q2dd3XV9lChoBkdAYynI91U2k2gHTegDaAhHQKAdVeiSJTF1fZQoaAZHQEZ9k8RtgrpoB0usaAhHQKAdz7kXDWN1fZQoaAZHQE+kEeQuEmJoB0uuaAhHQKAgbuRcNYt1fZQoaAZHQGQyBCUornVoB03oA2gIR0CgI1rCm/FjdX2UKGgGR0Bk1mN70Fr3aAdN6ANoCEdAoCO56QeV9nV9lChoBkdAZDvXeWOZLWgHTegDaAhHQKBw7XTVlPJ1fZQoaAZHQGJuyGzru6VoB03oA2gIR0CgcXtVJcxCdX2UKGgGR0Bi70HGCI1taAdN6ANoCEdAoHPtZzPrwHV9lChoBkdAZm3XuE25x2gHTegDaAhHQKB0b7Ikqtp1fZQoaAZHQGee/i5uqFRoB03oA2gIR0Cgd8IEbHZLdX2UKGgGR0Azv/PgNwzdaAdLrWgIR0CgemrM1TBJdX2UKGgGR0BmUvTVlPJraAdN6ANoCEdAoHsrviLl3nV9lChoBkdAY7EAqd6LO2gHTegDaAhHQKB7yYWtU4t1fZQoaAZHQGLj4MfA9FFoB03oA2gIR0CgfRpB5X2edX2UKGgGR0BjVGi35N48aAdN6ANoCEdAoIM+CVbA13V9lChoBkdAJ/opH7P6bmgHS6hoCEdAoIXsTewcHXV9lChoBkdAYtbRJmNBGGgHTegDaAhHQKCHy/xlQMx1fZQoaAZHQF6DQd0aIepoB03oA2gIR0CgiEfFirksdX2UKGgGR0BjwljoZAIIaAdN6ANoCEdAoItMjRlYl3V9lChoBkdAW31Mbm2b5WgHTegDaAhHQKCPbrZ8KHB1fZQoaAZHQGPNWZqmCRRoB03oA2gIR0CglWFlTWGzdX2UKGgGR0BesyTt9hJAaAdN6ANoCEdAoJW/8uSOinV9lChoBkdARW3HNorWiGgHS69oCEdAoJYDlRxcV3V9lChoBkdAYPP1h9b5dmgHTegDaAhHQKCbBcHnln11fZQoaAZHQGKeIS13MZBoB03oA2gIR0CgoF5dfLLZdX2UKGgGR0BQixLXcxj8aAdL0GgIR0CgpPrRSgoPdX2UKGgGR0BE8MV1wHZ9aAdLz2gIR0CgpTFVktmMdX2UKGgGR0Bm1LypaRp2aAdN6ANoCEdAoKdo57w8XHV9lChoBkdASbZnpSrHVGgHS61oCEdAoKgiyWzF/HV9lChoBkdAZy/+GXXyy2gHTegDaAhHQKCoPaaCtih1fZQoaAZHQGJnesPrfLtoB03oA2gIR0Cgq7wkHD77dX2UKGgGR0BmFSlabF0gaAdN6ANoCEdAoK05Cpm29nV9lChoBkdAYKnWe6I3zmgHTegDaAhHQKCvbl2/zrh1fZQoaAZHQGNA1LzwtrdoB03oA2gIR0Cgr/zGHYYjdX2UKGgGR0BjNuh7E5yVaAdN6ANoCEdAoLEEA3kxRHV9lChoBkdAYaV3pOerdWgHTegDaAhHQKCxZ0Eovzx1fZQoaAZHQGLRcxsVLzxoB03oA2gIR0Cgsa3L3bmEdX2UKGgGR0Bbo2jsUqQSaAdN6ANoCEdAoLUJU1hsqXV9lChoBkdAZUf8F6iTMmgHTegDaAhHQKC1bRgqmTF1fZQoaAZHQGeFWE9Mbm5oB03oA2gIR0CgteiFTNt7dX2UKGgGR0Atk73fyf+TaAdLWmgIR0CgtvqlP8AJdX2UKGgGR0BlDKXY150KaAdN6ANoCEdAoLh+sDGLk3V9lChoBkdAQn2717IDHWgHS4RoCEdAoLk5Ixxku3V9lChoBkdAY7uYb83uNWgHTegDaAhHQKC7RbGm1pl1fZQoaAZHv/QEdNnGsFNoB0ulaAhHQKC8NWEK3NN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.05, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}