jfjensen commited on
Commit
4989a94
·
1 Parent(s): 35a4502

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 279.91 +/- 17.35
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb52dfd0160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb52dfd01f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb52dfd0280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb52dfd0310>", "_build": "<function ActorCriticPolicy._build at 0x7fb52dfd03a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb52dfd0430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb52dfd04c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb52dfd0550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb52dfd05e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb52dfd0670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb52dfd0700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb52dfca630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1212416, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670365556409709358, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpb6zyui5e6QhRWOMlJRDP0ZCO72rh3twAAgD8AAIA/ELitPhn6YT99xNo+zTWnvjdl1j6qj6Y9AAAAAAAAAABNvDU9tbFrP1a0Ur0ivLa+sqtePaetur0AAAAAAAAAAM10Mb0fF4C7gam8O25vjzzRSKA8epd1vQAAgD8AAIA/M+WjPBSwz7pP85o9BD+BPHe7jLtmX2E9AACAPwAAgD9ms7k8B4GmP0mBFj5xx9G+SdBdPYDffD0AAAAAAAAAADPbQTyuw4y8Rg4RPDpu6Tzs4pO9rIITvQAAgD8AAIA/M3+KvIffMz96e4Y8Tnqovg3Wibtqbje9AAAAAAAAAACgHRo+tV+8P09MKj8zxA6+p1U5Pk4Rrz4AAAAAAAAAADOxJz0pjwa85PmjvJ/9CL4qBmE93moaPwAAgD8AAIA/gN8MvaSVGjwgWco9IiV+vlnKrT1Wvc48AAAAAAAAAACao4M8nI8wvHsXq7rSma88O+OWPQ6Ej70AAIA/AACAP5pzcz4c6Xk/RhwyPk1tq778n4s+KmUBvgAAAAAAAAAAzRyiujRevT0LcQe90XBCvjKHu7xWxIe8AAAAAAAAAADzQao9FOqDujoo+LWaENWwip0cuzoIIzUAAAAAAACAP83AfDyFM+G5rddQs452dK78k4k6DiuwMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.010346666666666726, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVXxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgqrRq0G+cUCUhpRSlIwBbJRNDwGMAXSUR0CVtHO3DvVmdX2UKGgGaAloD0MINe7Nb5jJcECUhpRSlGgVTSABaBZHQJW1lD/lyR11fZQoaAZoCWgPQwhp5POKJ4tvQJSGlFKUaBVNFQFoFkdAlbY4DgZTAHV9lChoBmgJaA9DCN7kt+jkQXJAlIaUUpRoFU0IAWgWR0CVtnuJk5IZdX2UKGgGaAloD0MITaJe8OnZcECUhpRSlGgVTRQBaBZHQJW2mxu89Oh1fZQoaAZoCWgPQwjxEpz6wLhvQJSGlFKUaBVNMQFoFkdAlbbhLXcxkHV9lChoBmgJaA9DCNl78UW7d3BAlIaUUpRoFUvtaBZHQJW3H4k/r0J1fZQoaAZoCWgPQwgmqrcGdpxyQJSGlFKUaBVL/WgWR0CVtzwPiDNAdX2UKGgGaAloD0MItMwiFBvNcUCUhpRSlGgVTQ4BaBZHQJW3U7q6e5F1fZQoaAZoCWgPQwiDMo0ml+NwQJSGlFKUaBVNGwFoFkdAlbeEQCjk/HV9lChoBmgJaA9DCAQEc/T4+G5AlIaUUpRoFU0XAWgWR0CVt50cOskqdX2UKGgGaAloD0MIZeQs7GmdcUCUhpRSlGgVTQEBaBZHQJW3yDmKZUl1fZQoaAZoCWgPQwjY8PRKGYdyQJSGlFKUaBVNBQFoFkdAlbfSO/+Kj3V9lChoBmgJaA9DCIlhhzFp83FAlIaUUpRoFU0BAWgWR0CVt96LwWnCdX2UKGgGaAloD0MIw7ZFmQ2TckCUhpRSlGgVTRUBaBZHQJW5KHM2WIJ1fZQoaAZoCWgPQwiGqphKv9psQJSGlFKUaBVNCwFoFkdAlblEXxe9jHV9lChoBmgJaA9DCLfT1ojgVG9AlIaUUpRoFUv/aBZHQJW9AS8J2Md1fZQoaAZoCWgPQwjZtFIIJEFzQJSGlFKUaBVL7mgWR0CVvQ6By0a7dX2UKGgGaAloD0MIfAqA8UzKckCUhpRSlGgVS+toFkdAlb3WfK6nSHV9lChoBmgJaA9DCLR224Wm3XFAlIaUUpRoFUvtaBZHQJW/RkK/mDF1fZQoaAZoCWgPQwi7Qh8s45pxQJSGlFKUaBVNEgFoFkdAlb9TwQUYbnV9lChoBmgJaA9DCFad1QL75m9AlIaUUpRoFU0GAWgWR0CVv98PWhAXdX2UKGgGaAloD0MIgq0SLI76cUCUhpRSlGgVTVwBaBZHQJXAII+nqFB1fZQoaAZoCWgPQwhGXtbEwhRxQJSGlFKUaBVL+mgWR0CVwFc+aBqcdX2UKGgGaAloD0MIL4Zyot1Xb0CUhpRSlGgVTR0BaBZHQJXAyXpnpSt1fZQoaAZoCWgPQwgmN4qs9UByQJSGlFKUaBVNHwFoFkdAlcEfNNahYnV9lChoBmgJaA9DCNy3Wieu129AlIaUUpRoFU0KAWgWR0CVwSplz2eydX2UKGgGaAloD0MIhllo57QOb0CUhpRSlGgVTTsBaBZHQJXBYmD15B11fZQoaAZoCWgPQwgaU7DGGQ9xQJSGlFKUaBVNEgFoFkdAlcFrsrupj3V9lChoBmgJaA9DCDM2dLM/Cm9AlIaUUpRoFU01AWgWR0CVwh8oQWepdX2UKGgGaAloD0MIKh2s/3PybUCUhpRSlGgVS/5oFkdAlcLgxvegtnV9lChoBmgJaA9DCMS12sPeLW1AlIaUUpRoFU0NAWgWR0CVwzJbt7a7dX2UKGgGaAloD0MIkC3L1yUucECUhpRSlGgVS/poFkdAlcbqu8scyXV9lChoBmgJaA9DCL2pSIWx8XBAlIaUUpRoFUv7aBZHQJXHrUPQOWl1fZQoaAZoCWgPQwhKmGn7V15xQJSGlFKUaBVL8mgWR0CVyJB6rvLHdX2UKGgGaAloD0MITRWMSuqYcECUhpRSlGgVTSUBaBZHQJXI9OKwY+B1fZQoaAZoCWgPQwjKUuv9hkZyQJSGlFKUaBVL9mgWR0CVyUd8zAN5dX2UKGgGaAloD0MIEYyDS4eJckCUhpRSlGgVTQEBaBZHQJXJUzEaVD91fZQoaAZoCWgPQwhKJqd2hs5wQJSGlFKUaBVL82gWR0CVyV8wHqu9dX2UKGgGaAloD0MI72/QXn0Kc0CUhpRSlGgVS+5oFkdAlcoe6VdHD3V9lChoBmgJaA9DCAAeUaG6j3JAlIaUUpRoFU0XAWgWR0CVywiqyWzGdX2UKGgGaAloD0MI+3WnO49PckCUhpRSlGgVS/5oFkdAlcsUsOG0u3V9lChoBmgJaA9DCCcvMgH/g3BAlIaUUpRoFU0VAWgWR0CVy1xlQMx5dX2UKGgGaAloD0MIA9L+B9hYcECUhpRSlGgVS/5oFkdAleQKH0se4nV9lChoBmgJaA9DCHUdqikJ8XJAlIaUUpRoFUv9aBZHQJXkndO6/Zd1fZQoaAZoCWgPQwgRxeQNMNxyQJSGlFKUaBVNEAFoFkdAleVZ+2E0znV9lChoBmgJaA9DCNl3RfC/AW9AlIaUUpRoFU1SAWgWR0CV5YhqTKT0dX2UKGgGaAloD0MI3iHFAAmQckCUhpRSlGgVTWEBaBZHQJXlw6eXiR51fZQoaAZoCWgPQwj04VmCDHhxQJSGlFKUaBVNAAFoFkdAleguFHrhSHV9lChoBmgJaA9DCKndrwL8MnJAlIaUUpRoFUvsaBZHQJXoXQ6ZH/d1fZQoaAZoCWgPQwgxJv29lC5vQJSGlFKUaBVL8GgWR0CV6UzsyBTXdX2UKGgGaAloD0MIxAWgUTqfcUCUhpRSlGgVTQQBaBZHQJXpU6PsAvN1fZQoaAZoCWgPQwimC7H6owpxQJSGlFKUaBVNCAFoFkdAlelqpLmITHV9lChoBmgJaA9DCFjGhm62tHJAlIaUUpRoFU0IAWgWR0CV6XjdpItldX2UKGgGaAloD0MIXRlUG5zccECUhpRSlGgVTSsBaBZHQJXp98iOeat1fZQoaAZoCWgPQwhRFOgTObFxQJSGlFKUaBVL/GgWR0CV6kCeVcD9dX2UKGgGaAloD0MIuHTMeUaIcUCUhpRSlGgVS/1oFkdAlepPEsJ6Y3V9lChoBmgJaA9DCIgSLXm8821AlIaUUpRoFU0HAWgWR0CV6r0l7dBTdX2UKGgGaAloD0MIl1MCYhIob0CUhpRSlGgVS/doFkdAletORHPNV3V9lChoBmgJaA9DCLqhKTt9e29AlIaUUpRoFU0QAWgWR0CV61X2M85kdX2UKGgGaAloD0MIogkUsQhbc0CUhpRSlGgVS+doFkdAlevNtZV4o3V9lChoBmgJaA9DCFX7dDzmR21AlIaUUpRoFUv2aBZHQJXr+vnr6cl1fZQoaAZoCWgPQwjNW3UdqshwQJSGlFKUaBVNGwFoFkdAle1eGCZnc3V9lChoBmgJaA9DCDJyFvZ0C3JAlIaUUpRoFUv7aBZHQJXu8r5IpYt1fZQoaAZoCWgPQwhv8fCeA5FxQJSGlFKUaBVNBQFoFkdAle9skt29tnV9lChoBmgJaA9DCPD6zFkfqXJAlIaUUpRoFUvlaBZHQJXwisuFpPB1fZQoaAZoCWgPQwhPd554DnpwQJSGlFKUaBVNBgFoFkdAlfChmTTvzHV9lChoBmgJaA9DCK/pQUEpBXJAlIaUUpRoFU0TAWgWR0CV8Pi97F85dX2UKGgGaAloD0MIFlETfb6ZcUCUhpRSlGgVTQ4BaBZHQJXw+Wt2cKB1fZQoaAZoCWgPQwgMBWwHY0xxQJSGlFKUaBVNHQFoFkdAlfFG9tdiUnV9lChoBmgJaA9DCI1donorwHJAlIaUUpRoFUvdaBZHQJXxodLg4wR1fZQoaAZoCWgPQwj18jtN5ptuQJSGlFKUaBVNBwFoFkdAlfJAl0HQhXV9lChoBmgJaA9DCFGFP8NbsnBAlIaUUpRoFU0pAWgWR0CV8mVZcLSedX2UKGgGaAloD0MIY0UNpuESckCUhpRSlGgVTX8CaBZHQJXyqNzbN8p1fZQoaAZoCWgPQwg8F0Z60fpuQJSGlFKUaBVL6mgWR0CV8rjyWiUQdX2UKGgGaAloD0MIJzJzgUvVcECUhpRSlGgVTSoBaBZHQJXyzy4FzMl1fZQoaAZoCWgPQwhP6svSTkRuQJSGlFKUaBVNDwFoFkdAlfMqaPS2IHV9lChoBmgJaA9DCHTqymc5onNAlIaUUpRoFU0JAWgWR0CV86ytmthedX2UKGgGaAloD0MInn3lQbpscUCUhpRSlGgVTSgBaBZHQJX13BWPtD51fZQoaAZoCWgPQwialIJu7/hwQJSGlFKUaBVL62gWR0CV9itQbdaddX2UKGgGaAloD0MIgxPRr23DckCUhpRSlGgVTRcBaBZHQJX3CqR2bG51fZQoaAZoCWgPQwgy5xn70olyQJSGlFKUaBVL/mgWR0CV99ZIQOFydX2UKGgGaAloD0MI/1w0ZPwMckCUhpRSlGgVTQABaBZHQJX4Vng5zYF1fZQoaAZoCWgPQwjU1ohgnF1xQJSGlFKUaBVL72gWR0CV+TNcW0qpdX2UKGgGaAloD0MI4QuTqQIuckCUhpRSlGgVTQYBaBZHQJX5Vs0pEx91fZQoaAZoCWgPQwi78IPzaZVxQJSGlFKUaBVNKAFoFkdAlflxVp9JBnV9lChoBmgJaA9DCPDDQUKUOnBAlIaUUpRoFU0eAWgWR0CV+bjy4FzNdX2UKGgGaAloD0MIYMd/gaAfbUCUhpRSlGgVS/NoFkdAlfnl1B+nZXV9lChoBmgJaA9DCAAfvHYpe3BAlIaUUpRoFU0TAWgWR0CV+qSSvC/HdX2UKGgGaAloD0MIuMoTCHt7ckCUhpRSlGgVTSgBaBZHQJX6/Z8KG+N1fZQoaAZoCWgPQwh8fEJ2nvZwQJSGlFKUaBVNVgFoFkdAlfsF5fMOgHV9lChoBmgJaA9DCMRCrWmeWnBAlIaUUpRoFU0fAWgWR0CV+wrGBFuvdX2UKGgGaAloD0MIeOxnsZS5b0CUhpRSlGgVTRQBaBZHQJX7LFhoduJ1fZQoaAZoCWgPQwgg66nV1wxwQJSGlFKUaBVNAwFoFkdAlftCQHRkVnV9lChoBmgJaA9DCFBUNqxpQHBAlIaUUpRoFU0AAWgWR0CV/SLE1l5GdX2UKGgGaAloD0MIH2lwW5v7cECUhpRSlGgVTRsBaBZHQJX+IelsP8R1fZQoaAZoCWgPQwjqr1dYMPpwQJSGlFKUaBVL7mgWR0CV/lPAwfyPdX2UKGgGaAloD0MIN/xuuuXGckCUhpRSlGgVTRQBaBZHQJX+wRDkU9J1fZQoaAZoCWgPQwjmBG1y+GtwQJSGlFKUaBVNCwFoFkdAlf+ac3EQ5HV9lChoBmgJaA9DCDpAMEdPt3BAlIaUUpRoFUv3aBZHQJX/0xbjcVR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 370, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1ec187f7a80af722f360a6f810771dd800e198fa7e43c1ec3433679e485cdd2
3
+ size 147110
ppo-LunarLander-v2-2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb52dfd0160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb52dfd01f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb52dfd0280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb52dfd0310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb52dfd03a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb52dfd0430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb52dfd04c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb52dfd0550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb52dfd05e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb52dfd0670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb52dfd0700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb52dfca630>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1212416,
46
+ "_total_timesteps": 1200000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670365556409709358,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpb6zyui5e6QhRWOMlJRDP0ZCO72rh3twAAgD8AAIA/ELitPhn6YT99xNo+zTWnvjdl1j6qj6Y9AAAAAAAAAABNvDU9tbFrP1a0Ur0ivLa+sqtePaetur0AAAAAAAAAAM10Mb0fF4C7gam8O25vjzzRSKA8epd1vQAAgD8AAIA/M+WjPBSwz7pP85o9BD+BPHe7jLtmX2E9AACAPwAAgD9ms7k8B4GmP0mBFj5xx9G+SdBdPYDffD0AAAAAAAAAADPbQTyuw4y8Rg4RPDpu6Tzs4pO9rIITvQAAgD8AAIA/M3+KvIffMz96e4Y8Tnqovg3Wibtqbje9AAAAAAAAAACgHRo+tV+8P09MKj8zxA6+p1U5Pk4Rrz4AAAAAAAAAADOxJz0pjwa85PmjvJ/9CL4qBmE93moaPwAAgD8AAIA/gN8MvaSVGjwgWco9IiV+vlnKrT1Wvc48AAAAAAAAAACao4M8nI8wvHsXq7rSma88O+OWPQ6Ej70AAIA/AACAP5pzcz4c6Xk/RhwyPk1tq778n4s+KmUBvgAAAAAAAAAAzRyiujRevT0LcQe90XBCvjKHu7xWxIe8AAAAAAAAAADzQao9FOqDujoo+LWaENWwip0cuzoIIzUAAAAAAACAP83AfDyFM+G5rddQs452dK78k4k6DiuwMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.010346666666666726,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVXxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgqrRq0G+cUCUhpRSlIwBbJRNDwGMAXSUR0CVtHO3DvVmdX2UKGgGaAloD0MINe7Nb5jJcECUhpRSlGgVTSABaBZHQJW1lD/lyR11fZQoaAZoCWgPQwhp5POKJ4tvQJSGlFKUaBVNFQFoFkdAlbY4DgZTAHV9lChoBmgJaA9DCN7kt+jkQXJAlIaUUpRoFU0IAWgWR0CVtnuJk5IZdX2UKGgGaAloD0MITaJe8OnZcECUhpRSlGgVTRQBaBZHQJW2mxu89Oh1fZQoaAZoCWgPQwjxEpz6wLhvQJSGlFKUaBVNMQFoFkdAlbbhLXcxkHV9lChoBmgJaA9DCNl78UW7d3BAlIaUUpRoFUvtaBZHQJW3H4k/r0J1fZQoaAZoCWgPQwgmqrcGdpxyQJSGlFKUaBVL/WgWR0CVtzwPiDNAdX2UKGgGaAloD0MItMwiFBvNcUCUhpRSlGgVTQ4BaBZHQJW3U7q6e5F1fZQoaAZoCWgPQwiDMo0ml+NwQJSGlFKUaBVNGwFoFkdAlbeEQCjk/HV9lChoBmgJaA9DCAQEc/T4+G5AlIaUUpRoFU0XAWgWR0CVt50cOskqdX2UKGgGaAloD0MIZeQs7GmdcUCUhpRSlGgVTQEBaBZHQJW3yDmKZUl1fZQoaAZoCWgPQwjY8PRKGYdyQJSGlFKUaBVNBQFoFkdAlbfSO/+Kj3V9lChoBmgJaA9DCIlhhzFp83FAlIaUUpRoFU0BAWgWR0CVt96LwWnCdX2UKGgGaAloD0MIw7ZFmQ2TckCUhpRSlGgVTRUBaBZHQJW5KHM2WIJ1fZQoaAZoCWgPQwiGqphKv9psQJSGlFKUaBVNCwFoFkdAlblEXxe9jHV9lChoBmgJaA9DCLfT1ojgVG9AlIaUUpRoFUv/aBZHQJW9AS8J2Md1fZQoaAZoCWgPQwjZtFIIJEFzQJSGlFKUaBVL7mgWR0CVvQ6By0a7dX2UKGgGaAloD0MIfAqA8UzKckCUhpRSlGgVS+toFkdAlb3WfK6nSHV9lChoBmgJaA9DCLR224Wm3XFAlIaUUpRoFUvtaBZHQJW/RkK/mDF1fZQoaAZoCWgPQwi7Qh8s45pxQJSGlFKUaBVNEgFoFkdAlb9TwQUYbnV9lChoBmgJaA9DCFad1QL75m9AlIaUUpRoFU0GAWgWR0CVv98PWhAXdX2UKGgGaAloD0MIgq0SLI76cUCUhpRSlGgVTVwBaBZHQJXAII+nqFB1fZQoaAZoCWgPQwhGXtbEwhRxQJSGlFKUaBVL+mgWR0CVwFc+aBqcdX2UKGgGaAloD0MIL4Zyot1Xb0CUhpRSlGgVTR0BaBZHQJXAyXpnpSt1fZQoaAZoCWgPQwgmN4qs9UByQJSGlFKUaBVNHwFoFkdAlcEfNNahYnV9lChoBmgJaA9DCNy3Wieu129AlIaUUpRoFU0KAWgWR0CVwSplz2eydX2UKGgGaAloD0MIhllo57QOb0CUhpRSlGgVTTsBaBZHQJXBYmD15B11fZQoaAZoCWgPQwgaU7DGGQ9xQJSGlFKUaBVNEgFoFkdAlcFrsrupj3V9lChoBmgJaA9DCDM2dLM/Cm9AlIaUUpRoFU01AWgWR0CVwh8oQWepdX2UKGgGaAloD0MIKh2s/3PybUCUhpRSlGgVS/5oFkdAlcLgxvegtnV9lChoBmgJaA9DCMS12sPeLW1AlIaUUpRoFU0NAWgWR0CVwzJbt7a7dX2UKGgGaAloD0MIkC3L1yUucECUhpRSlGgVS/poFkdAlcbqu8scyXV9lChoBmgJaA9DCL2pSIWx8XBAlIaUUpRoFUv7aBZHQJXHrUPQOWl1fZQoaAZoCWgPQwhKmGn7V15xQJSGlFKUaBVL8mgWR0CVyJB6rvLHdX2UKGgGaAloD0MITRWMSuqYcECUhpRSlGgVTSUBaBZHQJXI9OKwY+B1fZQoaAZoCWgPQwjKUuv9hkZyQJSGlFKUaBVL9mgWR0CVyUd8zAN5dX2UKGgGaAloD0MIEYyDS4eJckCUhpRSlGgVTQEBaBZHQJXJUzEaVD91fZQoaAZoCWgPQwhKJqd2hs5wQJSGlFKUaBVL82gWR0CVyV8wHqu9dX2UKGgGaAloD0MI72/QXn0Kc0CUhpRSlGgVS+5oFkdAlcoe6VdHD3V9lChoBmgJaA9DCAAeUaG6j3JAlIaUUpRoFU0XAWgWR0CVywiqyWzGdX2UKGgGaAloD0MI+3WnO49PckCUhpRSlGgVS/5oFkdAlcsUsOG0u3V9lChoBmgJaA9DCCcvMgH/g3BAlIaUUpRoFU0VAWgWR0CVy1xlQMx5dX2UKGgGaAloD0MIA9L+B9hYcECUhpRSlGgVS/5oFkdAleQKH0se4nV9lChoBmgJaA9DCHUdqikJ8XJAlIaUUpRoFUv9aBZHQJXkndO6/Zd1fZQoaAZoCWgPQwgRxeQNMNxyQJSGlFKUaBVNEAFoFkdAleVZ+2E0znV9lChoBmgJaA9DCNl3RfC/AW9AlIaUUpRoFU1SAWgWR0CV5YhqTKT0dX2UKGgGaAloD0MI3iHFAAmQckCUhpRSlGgVTWEBaBZHQJXlw6eXiR51fZQoaAZoCWgPQwj04VmCDHhxQJSGlFKUaBVNAAFoFkdAleguFHrhSHV9lChoBmgJaA9DCKndrwL8MnJAlIaUUpRoFUvsaBZHQJXoXQ6ZH/d1fZQoaAZoCWgPQwgxJv29lC5vQJSGlFKUaBVL8GgWR0CV6UzsyBTXdX2UKGgGaAloD0MIxAWgUTqfcUCUhpRSlGgVTQQBaBZHQJXpU6PsAvN1fZQoaAZoCWgPQwimC7H6owpxQJSGlFKUaBVNCAFoFkdAlelqpLmITHV9lChoBmgJaA9DCFjGhm62tHJAlIaUUpRoFU0IAWgWR0CV6XjdpItldX2UKGgGaAloD0MIXRlUG5zccECUhpRSlGgVTSsBaBZHQJXp98iOeat1fZQoaAZoCWgPQwhRFOgTObFxQJSGlFKUaBVL/GgWR0CV6kCeVcD9dX2UKGgGaAloD0MIuHTMeUaIcUCUhpRSlGgVS/1oFkdAlepPEsJ6Y3V9lChoBmgJaA9DCIgSLXm8821AlIaUUpRoFU0HAWgWR0CV6r0l7dBTdX2UKGgGaAloD0MIl1MCYhIob0CUhpRSlGgVS/doFkdAletORHPNV3V9lChoBmgJaA9DCLqhKTt9e29AlIaUUpRoFU0QAWgWR0CV61X2M85kdX2UKGgGaAloD0MIogkUsQhbc0CUhpRSlGgVS+doFkdAlevNtZV4o3V9lChoBmgJaA9DCFX7dDzmR21AlIaUUpRoFUv2aBZHQJXr+vnr6cl1fZQoaAZoCWgPQwjNW3UdqshwQJSGlFKUaBVNGwFoFkdAle1eGCZnc3V9lChoBmgJaA9DCDJyFvZ0C3JAlIaUUpRoFUv7aBZHQJXu8r5IpYt1fZQoaAZoCWgPQwhv8fCeA5FxQJSGlFKUaBVNBQFoFkdAle9skt29tnV9lChoBmgJaA9DCPD6zFkfqXJAlIaUUpRoFUvlaBZHQJXwisuFpPB1fZQoaAZoCWgPQwhPd554DnpwQJSGlFKUaBVNBgFoFkdAlfChmTTvzHV9lChoBmgJaA9DCK/pQUEpBXJAlIaUUpRoFU0TAWgWR0CV8Pi97F85dX2UKGgGaAloD0MIFlETfb6ZcUCUhpRSlGgVTQ4BaBZHQJXw+Wt2cKB1fZQoaAZoCWgPQwgMBWwHY0xxQJSGlFKUaBVNHQFoFkdAlfFG9tdiUnV9lChoBmgJaA9DCI1donorwHJAlIaUUpRoFUvdaBZHQJXxodLg4wR1fZQoaAZoCWgPQwj18jtN5ptuQJSGlFKUaBVNBwFoFkdAlfJAl0HQhXV9lChoBmgJaA9DCFGFP8NbsnBAlIaUUpRoFU0pAWgWR0CV8mVZcLSedX2UKGgGaAloD0MIY0UNpuESckCUhpRSlGgVTX8CaBZHQJXyqNzbN8p1fZQoaAZoCWgPQwg8F0Z60fpuQJSGlFKUaBVL6mgWR0CV8rjyWiUQdX2UKGgGaAloD0MIJzJzgUvVcECUhpRSlGgVTSoBaBZHQJXyzy4FzMl1fZQoaAZoCWgPQwhP6svSTkRuQJSGlFKUaBVNDwFoFkdAlfMqaPS2IHV9lChoBmgJaA9DCHTqymc5onNAlIaUUpRoFU0JAWgWR0CV86ytmthedX2UKGgGaAloD0MInn3lQbpscUCUhpRSlGgVTSgBaBZHQJX13BWPtD51fZQoaAZoCWgPQwialIJu7/hwQJSGlFKUaBVL62gWR0CV9itQbdaddX2UKGgGaAloD0MIgxPRr23DckCUhpRSlGgVTRcBaBZHQJX3CqR2bG51fZQoaAZoCWgPQwgy5xn70olyQJSGlFKUaBVL/mgWR0CV99ZIQOFydX2UKGgGaAloD0MI/1w0ZPwMckCUhpRSlGgVTQABaBZHQJX4Vng5zYF1fZQoaAZoCWgPQwjU1ohgnF1xQJSGlFKUaBVL72gWR0CV+TNcW0qpdX2UKGgGaAloD0MI4QuTqQIuckCUhpRSlGgVTQYBaBZHQJX5Vs0pEx91fZQoaAZoCWgPQwi78IPzaZVxQJSGlFKUaBVNKAFoFkdAlflxVp9JBnV9lChoBmgJaA9DCPDDQUKUOnBAlIaUUpRoFU0eAWgWR0CV+bjy4FzNdX2UKGgGaAloD0MIYMd/gaAfbUCUhpRSlGgVS/NoFkdAlfnl1B+nZXV9lChoBmgJaA9DCAAfvHYpe3BAlIaUUpRoFU0TAWgWR0CV+qSSvC/HdX2UKGgGaAloD0MIuMoTCHt7ckCUhpRSlGgVTSgBaBZHQJX6/Z8KG+N1fZQoaAZoCWgPQwh8fEJ2nvZwQJSGlFKUaBVNVgFoFkdAlfsF5fMOgHV9lChoBmgJaA9DCMRCrWmeWnBAlIaUUpRoFU0fAWgWR0CV+wrGBFuvdX2UKGgGaAloD0MIeOxnsZS5b0CUhpRSlGgVTRQBaBZHQJX7LFhoduJ1fZQoaAZoCWgPQwgg66nV1wxwQJSGlFKUaBVNAwFoFkdAlftCQHRkVnV9lChoBmgJaA9DCFBUNqxpQHBAlIaUUpRoFU0AAWgWR0CV/SLE1l5GdX2UKGgGaAloD0MIH2lwW5v7cECUhpRSlGgVTRsBaBZHQJX+IelsP8R1fZQoaAZoCWgPQwjqr1dYMPpwQJSGlFKUaBVL7mgWR0CV/lPAwfyPdX2UKGgGaAloD0MIN/xuuuXGckCUhpRSlGgVTRQBaBZHQJX+wRDkU9J1fZQoaAZoCWgPQwjmBG1y+GtwQJSGlFKUaBVNCwFoFkdAlf+ac3EQ5HV9lChoBmgJaA9DCDpAMEdPt3BAlIaUUpRoFUv3aBZHQJX/0xbjcVR1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 370,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 5,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:669fab352db08e1f2b4064bad843891298f195633bab54bf95df3ddc67b8de50
3
+ size 87865
ppo-LunarLander-v2-2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ba90fcc15e26b12722fe722bf6003a8ff14bb5e857c5a662408b750e5715020
3
+ size 43201
ppo-LunarLander-v2-2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (200 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 279.91407798561306, "std_reward": 17.34800816876595, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-06T22:52:01.106215"}