segformer-b0-finetuned-segments-sidewalk-3
This model is a fine-tuned version of nvidia/mit-b0 on the jhaberbe/lipid-droplets-v3 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1127
- Mean Iou: 0.4462
- Mean Accuracy: 0.8924
- Overall Accuracy: 0.8924
- Accuracy Unlabeled: nan
- Accuracy Lipid: 0.8924
- Iou Unlabeled: 0.0
- Iou Lipid: 0.8924
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 500
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Lipid | Iou Unlabeled | Iou Lipid |
---|---|---|---|---|---|---|---|---|---|---|
0.4354 | 4.0 | 20 | 0.6338 | 0.3881 | 0.7762 | 0.7762 | nan | 0.7762 | 0.0 | 0.7762 |
0.3649 | 8.0 | 40 | 0.5519 | 0.4247 | 0.8494 | 0.8494 | nan | 0.8494 | 0.0 | 0.8494 |
0.249 | 12.0 | 60 | 0.3059 | 0.3220 | 0.6440 | 0.6440 | nan | 0.6440 | 0.0 | 0.6440 |
0.1959 | 16.0 | 80 | 0.3187 | 0.3624 | 0.7247 | 0.7247 | nan | 0.7247 | 0.0 | 0.7247 |
0.1541 | 20.0 | 100 | 0.2542 | 0.3600 | 0.7201 | 0.7201 | nan | 0.7201 | 0.0 | 0.7201 |
0.245 | 24.0 | 120 | 0.1705 | 0.0943 | 0.1886 | 0.1886 | nan | 0.1886 | 0.0 | 0.1886 |
0.1661 | 28.0 | 140 | 0.0909 | 0.2357 | 0.4713 | 0.4713 | nan | 0.4713 | 0.0 | 0.4713 |
0.0906 | 32.0 | 160 | 0.2466 | 0.3304 | 0.6608 | 0.6608 | nan | 0.6608 | 0.0 | 0.6608 |
0.0747 | 36.0 | 180 | 0.2400 | 0.3773 | 0.7546 | 0.7546 | nan | 0.7546 | 0.0 | 0.7546 |
0.077 | 40.0 | 200 | 0.3043 | 0.4416 | 0.8832 | 0.8832 | nan | 0.8832 | 0.0 | 0.8832 |
0.077 | 44.0 | 220 | 0.1589 | 0.2127 | 0.4254 | 0.4254 | nan | 0.4254 | 0.0 | 0.4254 |
0.0595 | 48.0 | 240 | 0.2388 | 0.4113 | 0.8226 | 0.8226 | nan | 0.8226 | 0.0 | 0.8226 |
0.0678 | 52.0 | 260 | 0.1919 | 0.3874 | 0.7747 | 0.7747 | nan | 0.7747 | 0.0 | 0.7747 |
0.0584 | 56.0 | 280 | 0.2784 | 0.4315 | 0.8631 | 0.8631 | nan | 0.8631 | 0.0 | 0.8631 |
0.0752 | 60.0 | 300 | 0.1283 | 0.3702 | 0.7404 | 0.7404 | nan | 0.7404 | 0.0 | 0.7404 |
0.058 | 64.0 | 320 | 0.0754 | 0.3292 | 0.6585 | 0.6585 | nan | 0.6585 | 0.0 | 0.6585 |
0.071 | 68.0 | 340 | 0.1524 | 0.3384 | 0.6768 | 0.6768 | nan | 0.6768 | 0.0 | 0.6768 |
0.1157 | 72.0 | 360 | 0.0839 | 0.2022 | 0.4043 | 0.4043 | nan | 0.4043 | 0.0 | 0.4043 |
0.0681 | 76.0 | 380 | 0.1706 | 0.3494 | 0.6989 | 0.6989 | nan | 0.6989 | 0.0 | 0.6989 |
0.0391 | 80.0 | 400 | 0.1079 | 0.3062 | 0.6123 | 0.6123 | nan | 0.6123 | 0.0 | 0.6123 |
0.0493 | 84.0 | 420 | 0.2278 | 0.4427 | 0.8854 | 0.8854 | nan | 0.8854 | 0.0 | 0.8854 |
0.0544 | 88.0 | 440 | 0.1832 | 0.3955 | 0.7911 | 0.7911 | nan | 0.7911 | 0.0 | 0.7911 |
0.029 | 92.0 | 460 | 0.1327 | 0.3851 | 0.7703 | 0.7703 | nan | 0.7703 | 0.0 | 0.7703 |
0.0926 | 96.0 | 480 | 0.1737 | 0.4200 | 0.8400 | 0.8400 | nan | 0.8400 | 0.0 | 0.8400 |
0.0437 | 100.0 | 500 | 0.1248 | 0.3420 | 0.6841 | 0.6841 | nan | 0.6841 | 0.0 | 0.6841 |
0.0474 | 104.0 | 520 | 0.1365 | 0.3171 | 0.6343 | 0.6343 | nan | 0.6343 | 0.0 | 0.6343 |
0.0267 | 108.0 | 540 | 0.1942 | 0.4441 | 0.8881 | 0.8881 | nan | 0.8881 | 0.0 | 0.8881 |
0.0495 | 112.0 | 560 | 0.1312 | 0.3710 | 0.7420 | 0.7420 | nan | 0.7420 | 0.0 | 0.7420 |
0.0257 | 116.0 | 580 | 0.1224 | 0.3549 | 0.7097 | 0.7097 | nan | 0.7097 | 0.0 | 0.7097 |
0.0276 | 120.0 | 600 | 0.1836 | 0.4088 | 0.8176 | 0.8176 | nan | 0.8176 | 0.0 | 0.8176 |
0.0278 | 124.0 | 620 | 0.1652 | 0.4134 | 0.8269 | 0.8269 | nan | 0.8269 | 0.0 | 0.8269 |
0.04 | 128.0 | 640 | 0.1380 | 0.4057 | 0.8115 | 0.8115 | nan | 0.8115 | 0.0 | 0.8115 |
0.0373 | 132.0 | 660 | 0.1566 | 0.4473 | 0.8947 | 0.8947 | nan | 0.8947 | 0.0 | 0.8947 |
0.024 | 136.0 | 680 | 0.0994 | 0.3670 | 0.7339 | 0.7339 | nan | 0.7339 | 0.0 | 0.7339 |
0.0301 | 140.0 | 700 | 0.1427 | 0.3591 | 0.7182 | 0.7182 | nan | 0.7182 | 0.0 | 0.7182 |
0.0372 | 144.0 | 720 | 0.1781 | 0.4245 | 0.8489 | 0.8489 | nan | 0.8489 | 0.0 | 0.8489 |
0.0364 | 148.0 | 740 | 0.1370 | 0.3996 | 0.7992 | 0.7992 | nan | 0.7992 | 0.0 | 0.7992 |
0.0497 | 152.0 | 760 | 0.1406 | 0.4023 | 0.8046 | 0.8046 | nan | 0.8046 | 0.0 | 0.8046 |
0.0442 | 156.0 | 780 | 0.1583 | 0.4168 | 0.8337 | 0.8337 | nan | 0.8337 | 0.0 | 0.8337 |
0.0358 | 160.0 | 800 | 0.1217 | 0.3739 | 0.7478 | 0.7478 | nan | 0.7478 | 0.0 | 0.7478 |
0.0408 | 164.0 | 820 | 0.0968 | 0.2903 | 0.5805 | 0.5805 | nan | 0.5805 | 0.0 | 0.5805 |
0.0225 | 168.0 | 840 | 0.1196 | 0.4256 | 0.8512 | 0.8512 | nan | 0.8512 | 0.0 | 0.8512 |
0.0399 | 172.0 | 860 | 0.1074 | 0.2849 | 0.5697 | 0.5697 | nan | 0.5697 | 0.0 | 0.5697 |
0.0436 | 176.0 | 880 | 0.0858 | 0.3241 | 0.6481 | 0.6481 | nan | 0.6481 | 0.0 | 0.6481 |
0.0351 | 180.0 | 900 | 0.1624 | 0.4129 | 0.8258 | 0.8258 | nan | 0.8258 | 0.0 | 0.8258 |
0.0291 | 184.0 | 920 | 0.1507 | 0.4153 | 0.8307 | 0.8307 | nan | 0.8307 | 0.0 | 0.8307 |
0.0417 | 188.0 | 940 | 0.1322 | 0.3823 | 0.7645 | 0.7645 | nan | 0.7645 | 0.0 | 0.7645 |
0.0277 | 192.0 | 960 | 0.1121 | 0.3679 | 0.7358 | 0.7358 | nan | 0.7358 | 0.0 | 0.7358 |
0.0289 | 196.0 | 980 | 0.1493 | 0.4154 | 0.8307 | 0.8307 | nan | 0.8307 | 0.0 | 0.8307 |
0.0366 | 200.0 | 1000 | 0.1342 | 0.4056 | 0.8111 | 0.8111 | nan | 0.8111 | 0.0 | 0.8111 |
0.0337 | 204.0 | 1020 | 0.1494 | 0.4110 | 0.8219 | 0.8219 | nan | 0.8219 | 0.0 | 0.8219 |
0.0287 | 208.0 | 1040 | 0.1065 | 0.4281 | 0.8561 | 0.8561 | nan | 0.8561 | 0.0 | 0.8561 |
0.0286 | 212.0 | 1060 | 0.1629 | 0.4310 | 0.8621 | 0.8621 | nan | 0.8621 | 0.0 | 0.8621 |
0.0319 | 216.0 | 1080 | 0.1547 | 0.3900 | 0.7799 | 0.7799 | nan | 0.7799 | 0.0 | 0.7799 |
0.038 | 220.0 | 1100 | 0.0830 | 0.4073 | 0.8146 | 0.8146 | nan | 0.8146 | 0.0 | 0.8146 |
0.0207 | 224.0 | 1120 | 0.1571 | 0.4229 | 0.8458 | 0.8458 | nan | 0.8458 | 0.0 | 0.8458 |
0.0406 | 228.0 | 1140 | 0.1477 | 0.4302 | 0.8604 | 0.8604 | nan | 0.8604 | 0.0 | 0.8604 |
0.0323 | 232.0 | 1160 | 0.1267 | 0.4136 | 0.8272 | 0.8272 | nan | 0.8272 | 0.0 | 0.8272 |
0.0269 | 236.0 | 1180 | 0.1262 | 0.4243 | 0.8485 | 0.8485 | nan | 0.8485 | 0.0 | 0.8485 |
0.0484 | 240.0 | 1200 | 0.1179 | 0.4161 | 0.8322 | 0.8322 | nan | 0.8322 | 0.0 | 0.8322 |
0.0366 | 244.0 | 1220 | 0.0954 | 0.4016 | 0.8031 | 0.8031 | nan | 0.8031 | 0.0 | 0.8031 |
0.0384 | 248.0 | 1240 | 0.0980 | 0.4147 | 0.8294 | 0.8294 | nan | 0.8294 | 0.0 | 0.8294 |
0.0205 | 252.0 | 1260 | 0.0946 | 0.3758 | 0.7516 | 0.7516 | nan | 0.7516 | 0.0 | 0.7516 |
0.0243 | 256.0 | 1280 | 0.1198 | 0.4322 | 0.8644 | 0.8644 | nan | 0.8644 | 0.0 | 0.8644 |
0.033 | 260.0 | 1300 | 0.1271 | 0.4357 | 0.8714 | 0.8714 | nan | 0.8714 | 0.0 | 0.8714 |
0.0219 | 264.0 | 1320 | 0.1041 | 0.4368 | 0.8736 | 0.8736 | nan | 0.8736 | 0.0 | 0.8736 |
0.0304 | 268.0 | 1340 | 0.1113 | 0.4122 | 0.8244 | 0.8244 | nan | 0.8244 | 0.0 | 0.8244 |
0.0241 | 272.0 | 1360 | 0.0802 | 0.4152 | 0.8303 | 0.8303 | nan | 0.8303 | 0.0 | 0.8303 |
0.0209 | 276.0 | 1380 | 0.1255 | 0.4476 | 0.8952 | 0.8952 | nan | 0.8952 | 0.0 | 0.8952 |
0.015 | 280.0 | 1400 | 0.1500 | 0.4440 | 0.8879 | 0.8879 | nan | 0.8879 | 0.0 | 0.8879 |
0.0209 | 284.0 | 1420 | 0.1275 | 0.4471 | 0.8941 | 0.8941 | nan | 0.8941 | 0.0 | 0.8941 |
0.0423 | 288.0 | 1440 | 0.1406 | 0.4135 | 0.8271 | 0.8271 | nan | 0.8271 | 0.0 | 0.8271 |
0.0179 | 292.0 | 1460 | 0.0999 | 0.4272 | 0.8544 | 0.8544 | nan | 0.8544 | 0.0 | 0.8544 |
0.028 | 296.0 | 1480 | 0.1374 | 0.4471 | 0.8942 | 0.8942 | nan | 0.8942 | 0.0 | 0.8942 |
0.0524 | 300.0 | 1500 | 0.1253 | 0.4339 | 0.8679 | 0.8679 | nan | 0.8679 | 0.0 | 0.8679 |
0.0182 | 304.0 | 1520 | 0.1077 | 0.4222 | 0.8444 | 0.8444 | nan | 0.8444 | 0.0 | 0.8444 |
0.0141 | 308.0 | 1540 | 0.1295 | 0.4478 | 0.8956 | 0.8956 | nan | 0.8956 | 0.0 | 0.8956 |
0.0255 | 312.0 | 1560 | 0.1309 | 0.4364 | 0.8728 | 0.8728 | nan | 0.8728 | 0.0 | 0.8728 |
0.0375 | 316.0 | 1580 | 0.0917 | 0.4369 | 0.8737 | 0.8737 | nan | 0.8737 | 0.0 | 0.8737 |
0.0312 | 320.0 | 1600 | 0.0967 | 0.3975 | 0.7951 | 0.7951 | nan | 0.7951 | 0.0 | 0.7951 |
0.0312 | 324.0 | 1620 | 0.1041 | 0.4184 | 0.8368 | 0.8368 | nan | 0.8368 | 0.0 | 0.8368 |
0.0294 | 328.0 | 1640 | 0.1041 | 0.4279 | 0.8558 | 0.8558 | nan | 0.8558 | 0.0 | 0.8558 |
0.0277 | 332.0 | 1660 | 0.1285 | 0.4322 | 0.8644 | 0.8644 | nan | 0.8644 | 0.0 | 0.8644 |
0.022 | 336.0 | 1680 | 0.0897 | 0.3872 | 0.7744 | 0.7744 | nan | 0.7744 | 0.0 | 0.7744 |
0.0185 | 340.0 | 1700 | 0.1148 | 0.4293 | 0.8586 | 0.8586 | nan | 0.8586 | 0.0 | 0.8586 |
0.0197 | 344.0 | 1720 | 0.1161 | 0.4448 | 0.8896 | 0.8896 | nan | 0.8896 | 0.0 | 0.8896 |
0.0243 | 348.0 | 1740 | 0.0981 | 0.4256 | 0.8511 | 0.8511 | nan | 0.8511 | 0.0 | 0.8511 |
0.0252 | 352.0 | 1760 | 0.0848 | 0.3893 | 0.7787 | 0.7787 | nan | 0.7787 | 0.0 | 0.7787 |
0.0273 | 356.0 | 1780 | 0.0852 | 0.4175 | 0.8350 | 0.8350 | nan | 0.8350 | 0.0 | 0.8350 |
0.0299 | 360.0 | 1800 | 0.0912 | 0.4016 | 0.8033 | 0.8033 | nan | 0.8033 | 0.0 | 0.8033 |
0.0223 | 364.0 | 1820 | 0.0877 | 0.4222 | 0.8444 | 0.8444 | nan | 0.8444 | 0.0 | 0.8444 |
0.0246 | 368.0 | 1840 | 0.1020 | 0.4455 | 0.8910 | 0.8910 | nan | 0.8910 | 0.0 | 0.8910 |
0.0354 | 372.0 | 1860 | 0.1018 | 0.4262 | 0.8524 | 0.8524 | nan | 0.8524 | 0.0 | 0.8524 |
0.0228 | 376.0 | 1880 | 0.1030 | 0.4422 | 0.8843 | 0.8843 | nan | 0.8843 | 0.0 | 0.8843 |
0.0208 | 380.0 | 1900 | 0.1135 | 0.4403 | 0.8805 | 0.8805 | nan | 0.8805 | 0.0 | 0.8805 |
0.0187 | 384.0 | 1920 | 0.1085 | 0.4384 | 0.8768 | 0.8768 | nan | 0.8768 | 0.0 | 0.8768 |
0.0211 | 388.0 | 1940 | 0.0929 | 0.4376 | 0.8752 | 0.8752 | nan | 0.8752 | 0.0 | 0.8752 |
0.0312 | 392.0 | 1960 | 0.0926 | 0.4450 | 0.8899 | 0.8899 | nan | 0.8899 | 0.0 | 0.8899 |
0.0211 | 396.0 | 1980 | 0.0946 | 0.4424 | 0.8847 | 0.8847 | nan | 0.8847 | 0.0 | 0.8847 |
0.0106 | 400.0 | 2000 | 0.1098 | 0.4487 | 0.8974 | 0.8974 | nan | 0.8974 | 0.0 | 0.8974 |
0.0244 | 404.0 | 2020 | 0.0960 | 0.4394 | 0.8788 | 0.8788 | nan | 0.8788 | 0.0 | 0.8788 |
0.0156 | 408.0 | 2040 | 0.0916 | 0.4257 | 0.8514 | 0.8514 | nan | 0.8514 | 0.0 | 0.8514 |
0.0186 | 412.0 | 2060 | 0.1090 | 0.4476 | 0.8953 | 0.8953 | nan | 0.8953 | 0.0 | 0.8953 |
0.0219 | 416.0 | 2080 | 0.1093 | 0.4297 | 0.8594 | 0.8594 | nan | 0.8594 | 0.0 | 0.8594 |
0.012 | 420.0 | 2100 | 0.0891 | 0.4347 | 0.8693 | 0.8693 | nan | 0.8693 | 0.0 | 0.8693 |
0.0367 | 424.0 | 2120 | 0.1247 | 0.4566 | 0.9132 | 0.9132 | nan | 0.9132 | 0.0 | 0.9132 |
0.0123 | 428.0 | 2140 | 0.0705 | 0.4162 | 0.8323 | 0.8323 | nan | 0.8323 | 0.0 | 0.8323 |
0.0246 | 432.0 | 2160 | 0.1167 | 0.4468 | 0.8936 | 0.8936 | nan | 0.8936 | 0.0 | 0.8936 |
0.0144 | 436.0 | 2180 | 0.1139 | 0.4523 | 0.9047 | 0.9047 | nan | 0.9047 | 0.0 | 0.9047 |
0.0278 | 440.0 | 2200 | 0.1015 | 0.4330 | 0.8660 | 0.8660 | nan | 0.8660 | 0.0 | 0.8660 |
0.0157 | 444.0 | 2220 | 0.0921 | 0.4196 | 0.8392 | 0.8392 | nan | 0.8392 | 0.0 | 0.8392 |
0.0207 | 448.0 | 2240 | 0.1109 | 0.4462 | 0.8924 | 0.8924 | nan | 0.8924 | 0.0 | 0.8924 |
0.0191 | 452.0 | 2260 | 0.1060 | 0.4421 | 0.8843 | 0.8843 | nan | 0.8843 | 0.0 | 0.8843 |
0.0214 | 456.0 | 2280 | 0.1137 | 0.4357 | 0.8714 | 0.8714 | nan | 0.8714 | 0.0 | 0.8714 |
0.0228 | 460.0 | 2300 | 0.0943 | 0.4340 | 0.8679 | 0.8679 | nan | 0.8679 | 0.0 | 0.8679 |
0.0213 | 464.0 | 2320 | 0.1003 | 0.4379 | 0.8759 | 0.8759 | nan | 0.8759 | 0.0 | 0.8759 |
0.0248 | 468.0 | 2340 | 0.1063 | 0.4525 | 0.9050 | 0.9050 | nan | 0.9050 | 0.0 | 0.9050 |
0.0186 | 472.0 | 2360 | 0.0915 | 0.4278 | 0.8556 | 0.8556 | nan | 0.8556 | 0.0 | 0.8556 |
0.0212 | 476.0 | 2380 | 0.0948 | 0.4375 | 0.8751 | 0.8751 | nan | 0.8751 | 0.0 | 0.8751 |
0.0201 | 480.0 | 2400 | 0.0961 | 0.4326 | 0.8652 | 0.8652 | nan | 0.8652 | 0.0 | 0.8652 |
0.0168 | 484.0 | 2420 | 0.1050 | 0.4372 | 0.8745 | 0.8745 | nan | 0.8745 | 0.0 | 0.8745 |
0.0242 | 488.0 | 2440 | 0.1120 | 0.4481 | 0.8963 | 0.8963 | nan | 0.8963 | 0.0 | 0.8963 |
0.017 | 492.0 | 2460 | 0.1035 | 0.4235 | 0.8470 | 0.8470 | nan | 0.8470 | 0.0 | 0.8470 |
0.0267 | 496.0 | 2480 | 0.1076 | 0.4465 | 0.8931 | 0.8931 | nan | 0.8931 | 0.0 | 0.8931 |
0.0148 | 500.0 | 2500 | 0.1127 | 0.4462 | 0.8924 | 0.8924 | nan | 0.8924 | 0.0 | 0.8924 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jhaberbe/segformer-b0-finetuned-segments-sidewalk-3
Base model
nvidia/mit-b0